Associate Professor

+44 (0)131 451 3107
Room 2.09
William Perkin Building
Heriot-Watt University
Jan-Willem Bos
Roles and responsibilities
  • Director of Studies, Year 2
  • Deputy head of Materials Chemistry research grouping
  • Deputy Director MSc Materials for Sustainable and Renewable Energies

Energy Materials

We use solid-state chemistry methods to identify, synthesise and characterise new solid state materials that may underpin future energy technologies. The aim is to understand the relation between composition, structure and functional properties. Areas of interest are:

1. Thermoelectric Energy Conversion

This is a solid state method to convert heat into electricity (or vice versa) and should be considered an energy saving technology where waste heat from for example industrial processes is converted into electricity. The aim of the research is to discover materials with improved energy conversion efficiencies. Current research is focused on semiconducting intermetallic phases prepared via ultra-high temperature reactions.


Figure 1. Schematic of a thermoelectric power generation device with a TiCoSb half-Heusler intermetallic p-type leg.

2. High-Temperature Superconductors

Superconductors carry electrical currents without resistive losses and expel applied magnetic fields. This has potential uses in the electrical power grid and in electronics. Current applications include high-field magnets used in MRI and in Maglev trains. However, wide scale implementation has been limited as the operating temperatures of all known superconductors are well below room temperature. Our research is focused on the iron based high-Tc superconductors, which have critical temperatures up to 55 K.


Figure 2. Left: Zero resistance below 51 K for TbFeAsO0.9F0.1. Right: Crystal structure of the RFeAs(O,F) high-Tc superconductors (R = rare-earth).

3. Electrocatalysts for Water Splitting

The current bottleneck in the splitting of water is the dioxygen formation reaction. Our research is focussed on developing improved electrocatalysts for this reaction by studying a variety of transition metal oxides.

Figure 3. Electrochemical oxidation of water using a catalyst, e.g. RuO2.

Selected publications
  1. ‘Enhanced thermoelectric performance in TiNiSn-based half-Heuslers’.  R.A. Downie, D.A. MacLaren, R.I. Smith, and J.W.G. Bos. Chem. Commun., 2013, 4184.
  2. ‘Valence Bond Glass on an fcc Lattice in the Double Perovskite Ba2YMoO6’.  M.A. de Vries, A.C. McLaughlin, and J.W.G. Bos. Phys. Rev. Lett., 2010, 104, 177202.
  3. ‘Superconductivity in NdFe1-xCoxAsO (0.05 < x < 0.20) and rare-earth magnetic ordering in NdCoAsO’. A. Marcinkova, D.A.M. Grist, I. Margiolaki, T.C. Hansen, S. Margadonna, and J.W.G. Bos, Phys. Rev. B, 2010, 81, 064511
  4. ‘Structural and electronic response upon hole doping of rare-earth iron oxyarsenides Nd1-xSrxFeAsO (0 < x £ 0.2)’. K. Kasperkiewicz, J.W.G. Bos, A.N. Fitch, K. Prassides, and S. Margadonna. Chem. Commun., 2009, 707.
  5. ‘High pressure synthesis of late rare-earth RFeAs(O,F) superconductors: R = Tb and Dy’. J.W.G. Bos, G.B.S. Penny, J.A. Rodgers, D.A. Sokolov, A.D. Huxley and J.P. Attfield, Chem. Commun., 2008, 3634.
Further information

Research Group webpage: