Water Management Research has a strong and established track record in delivering cutting-edge research in all aspects of water management. Contributing staff possess a broad range of expertise, with particular strength in: environmental flow interactions; flood risk management; urban drainage and culvert design; environmental fluid mechanics; pollution incident modelling; river dynamics; water resources management; and the application of GIS to water problems.

Research activities

Research activities are focused on the development and application of advanced numerical models for the prediction of both flow and transport problems, providing engineering solutions and improved management practices for a range of water-related environmental problems. This research is also supported by experimental studies in the School's recently refurbished hydraulics laboratory and by field-based measurement programmes.

Flood risk management

Within flood risk management research, we possess expertise in flood inundation modelling, storm water drainage systems, retention basins, flood risk analysis and communication, and support for GIS technologies. We currently play a leading role in the £7 million UK Flood Risk Management Research Consortium II. Within the consortium's portfolio of research we specialise in flood inundation modelling, culvert design, operation and maintenance and urban drainage aimed at: developing predictive methods to address problems associated with debris blockage at culverts; improving sewerage asset management; and evaluating treatment trains within Sustainable Urban Drainage Systems (SUDS). Efficient data management and mapping using geographical information systems (GIS) is becoming an increasingly important tool for decision makers to determine the appropriate allocation of resources, and the scope of research within GIS ranges from the rehabilitation of sewer systems to whole catchment management plans.

Flood and Coastal Erosion Risk Management Network

The Flood and Coastal Erosion Risk Management Network (FCERM.net) was launched in November 2013. The Network is led by Professor Garry Pender and its members are a mixture of academics from universities across the UK, engineering consultants and Government bodies such as SEPA and the Environment Agency. The Network brings together this diverse group of expert practitioners to look at ways to deal with flood risk and how we respond to the ongoing challenges that high tides, intense rain storms and rising sea levels pose to residents. An interview with Professor Pender about the Network is available here.

Water resources management

Significant challenges associated with the severe pressures on water resources in many parts of the world are key motivators within water resources management research. Problems relating to increasing demand, changing runoff patterns and water contamination are tackled through the delivery of tools for better planning and operation of irrigation and water supply reservoirs, groundwater evaluation and management, and wastewater treatment and operation.

River dynamics

Research into river dynamics relates to the fluvial processes of water flow, sediment transport and morphological evolution. We have internationally expertise in theoretical, experimental and computational studies within these areas, with recent work focussing on threshold of motion, entrainment of bed load sediment transport, coupled with mathematical modelling of fluvial processes, and multiple time scales associated with these processes.

Mathematical modelling & field monitoring

Combined expertise in state-of-the art mathematical modelling and field monitoring studies is applied in pollution incident modelling to predict the transport, dispersion and fate of accidental releases of pollutants into river systems, assess their environmental impact in the aquatic environment and quantify the response of the river system. Recently, research expertise has grown in environmental fluid mechanics and environmental flow interactions. The former focuses predominantly on buoyancy-driven, stratified flow problems and sedimentation processes within estuarine and coastal waters, as well as the behaviour of dense oceanic gravity currents. The latter examines the impact on physical structure and ecological response within a river basin to development activities, establishing relationships between flow, river form, ecosystems and flood regime at different spatial and temporal scales.

Contributing staff

Professor Gareth Pender
Professor Bayo Adeloye
Dr Scott Arthur
Dr Lindsay Beevers
Dr David Campbell
Dr Alan Cuthbertson
Professor Aleksandra Drizo​
Dr Michael Gormley
Professor Lynne Jack
Dr Rabee Rustum
Professor Bhaskar Sen Gupta
Dr Grant Wright

Associated staff

Dr Caroline Brown
Professor Paul Jowitt
Dr Gina Netto
Dr Guy Walker