Reference no.
EGIS2019IP
Closing date
Supervisors

Dr Ian Pattison

Description

Flooding, and management, cost the UK £2.2billion per year. Under current economic pressures, flood policy is shifting from entirely flood defenses to broader management strategies. This includes “Natural Flood Management” which aims to restore the natural functioning of catchments to store water and slow the flow. Examples of NFM, shown in Figure 1, include tree planting, leaky dams and river restoration, along with agricultural land management. These work with hydrological processes, including increasing infiltration of rainfall into the soil, storing water on the floodplain and increasing the flow resistance to flow within the channel to attenuate the flood peak (taking the top of the peak).

However, despite gaining popularity with policy makers and flood action groups, a lack of evidence on its effectiveness and advice about how to go about implementing such an innovative approach are limiting its success.

There are two gaps in current knowledge relating to the effectiveness of NFM. First, at the intervention scale, we do not understand how much hydrological processes are modified by the NFM feature. Second, at the larger sub-catchment and sub-catchment scale, we have limited knowledge of how the effect of the interventions combine together and propagate through the river system. The importance of how sub-catchments interact in terms of tributary synchronicity is essential to understand in terms of larger scale scheme design (Pattison et al., 2014).

This project aims to develop guidance on how NFM schemes can be designed to optimise and monitor their effectiveness at different spatial scales.

Objectives

  1. Using recently installed river flow gauges, monitor the impact of Environment Agency installed NFM interventions in the Upper Soar catchment.
  2. Develop models to design NFM schemes at the catchment scale to optimise for performance.
  3. How to work with policy makers and land owners to broaden the implementation of NFM to large catchments.

Methodology:

This project will utilise a mixed methods approach, combining field monitoring, hydrological modelling and stakeholder engagement. You will work closely with the Environment Agency and the Soar Catchment Partnership on their ongoing DEFRA Upper Soar Tributaries NFM scheme.

The Environment Agency are currently implementing NFM interventions (e.g. leaky dams, ponds), in the Upper Soar Catchment, along with field instrumentation which will monitor its impacts.

Finally, hydrological modelling using CRUM3 (Lane et al., 2009) to test the catchment scale impact of different “What if” scenarios on flood risk. Furthermore, optimisation techniques will be utilised to determine the best locations to put different NFM interventions.

Training and skills:

You will join a vibrant research community within the Institute of Infrastructure and Environment at Heriot Watt University in Edinburgh. You will be a member of the Water Group, which run a series of seminars and training workshops.

During the project you will use a wide range of innovative methodologies and cutting edge techniques in hydrological monitoring and modelling. The project will therefore provide excellent multidisciplinary training and an exciting research opportunity to interact amongst the fields of hydrology, hydraulics, data science and computational modelling. For more information on our activities please visit our website: https://www.hw.ac.uk/schools/energy-geoscience-infrastructure-society/research/institute-infrastructure-environment.htm

The successful applicant will have opportunities to attend relevant training courses and to present their research at national and international conferences to build communication and networking skills. Furthermore, you will work closely with the Environment Agency, providing frequent updates and attending meetings with stakeholders in the catchment. All costs will be covered for these activities.

Eligibility

This project is available to home and EU students. The successful candidate should have a strong background in hydrology and river science, have good mathematical and computer skills and possess at minimum a masters and undergraduate degree in related disciplines (Geography, Civil Engineering, Environmental Science).

Funding

The scholarship, half funded by the Environment Agency, will cover tuition fees and provide an annual stipend for the 36 month duration of the studentship of £15,009/year following UKRI guidelines.

How to apply

Please complete our online application form.

Please select PhD Environment and include the project title and supervisor on your application. Include the project reference in the scholarship section. In the section for project proposal, upload a supporting statement documenting your reasons for applying to this particular PhD, and why you are an ideal candidate for the position. You will also need to provide a CV, a copy of your degree certificate and relevant transcripts and one academic reference.  You must also provide proof of your ability in the English language (if English is not your mother tongue or if you have not already studied for a degree that was taught in English within the last 2 years). We require an IELTS certificate showing an overall score of at least 6.5 with no component scoring less than 6.0 or a TOEFL certificate with a minimum score of 90 points.

For informal discussion about this project, Dr Ian Pattison (i.pattison@hw.ac.uk) (0131 451 3318) (@GoWithTheF1ow) for more information.

Timetable

The closing date for applications is Friday 18th Oct 2019 with a start date of 6 January 2020.