COURSE DETAILS

Course Code: F71AJ
Full Course Title: Financial Economics 2
SCQF Level: 11
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

Undergraduate: Yes
Postgraduate Taught: Yes
Postgraduate Research: No

Additional Information:

COURSE AIMS

This course aims to provide a good understanding of the concepts, methods and mathematics used in arbitrage pricing in discrete and continuous time

LEARNING OUTCOMES – SUBJECT MASTERY

Students should be able to:

- demonstrate an understanding of the main aspects of martingale theory in discrete and continuous time.
- know the main results and basic applications of stochastic Itô calculus in problems of financial mathematics.
- understand the role of equivalent martingale measures in the arbitrage-free pricing of contingent claims and their connection with arbitrage free/complete markets.
- understand the martingale representation theorem and its role in financial applications.
- understand stochastic differential equations.
- state the binomial and Black-Scholes model.
- derive the Black-Scholes formula and the Black-Scholes partial differential equation.
- price simple contingent claims (in particular, European-style options and forward contracts).
- understand the concepts of replication and hedging.
- construct a buy-and-hold portfolio for a simple contingent claim.
- construct a portfolio that is neutral with respect to the delta and gamma, and understand the implications of the neutrality.
- simple extensions of the Black-Scholes model, for example to dividend-paying stocks, and the corresponding Black-Scholes formula.
- know desirable characteristics of term structure models.
- know well-known short rate models and their advantages and disadvantages.
- derive relationships between forward interest rates, spot rates and zero-coupon bond prices.
- manipulate explicit zero-coupon bond price formulae for the Vasicek and Cox-Ingersoll-Ross models, and derive the implied forward rate curves.
- understand basic credit risk models and define the different approaches to the modelling of credit risk.
- know stochastic models for stock prices other than the Black-Scholes model.
LEARNING OUTCOMES – PERSONAL ABILITIES

On completion of this course the student should be able to:

- Demonstrate knowledge and critical understanding of the concepts and models in financial mathematics.
- Demonstrate the ability to learn independently.
- Manage time, work to deadlines and prioritize workloads.
- Present results in a way that demonstrates that they have understood the technical and broader issues in financial mathematics.

SYLLABUS

- Background on financial derivatives.
- The binomial model of stock prices.
- Definition and properties of Brownian motion and stochastic integrals.
- Stochastic differential equations.
- Geometric Brownian motion and Ornstein-Uhlenbeck process.
- Definition and examples of continuous-time martingales, including the stochastic integral as a martingale.
- Statement of the Martingale Representation Theorem.
- Stochastic calculus and Ito's Formula.
- Change of measure and Girsanov's Theorem.
- The Black-Scholes Model.
- Other models of stock prices.
- Portfolio risk management.
- Models of the term structure of interest rates.

Introduction to credit risk models.

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>60</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Examination will be at least 60% and no more than 80%.

| Y | Coursework | 40 | Assessment | Semester 2 |

Coursework will be at least 20% and no more than 40%.

| Y | Examination | 100 | 120 | Reassessment | Semester 2 |
Re-assessment in the next academic year.