COURSE DETAILS
Course Code: F29AI
Full Course Title: Artificial Intelligence and Intelligent Agents
SCQF Level: 9
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes
Postgraduate Taught: Yes
Postgraduate Research: No

COURSE AIMS
To introduce the fundamental concepts and techniques of AI, including planning, search and knowledge representation

• To introduce the scope, subfields and applications of AI, topics to be taken from a list including natural language processing, expert systems, robots and autonomous agents, machine learning and neural networks, and vision.
• To develop skills in AI programming in an appropriate language

LEARNING OUTCOMES – SUBJECT MASTERY
• Critical understanding of traditional AI problem solving and knowledge representation methods
• Use of knowledge representation techniques (such as predicate logic and frames).
• Critical understanding of different systematic and heuristic search techniques
• Practice in expressing problems in terms of state-space search
• Broad knowledge and understanding of the subfields and applications of AI, such as computer vision, machine learning and expert systems.
• Detailed knowledge of one subfield of AI (e.g. natural language processing, planning) and ability to apply its formalisms and representations to small problems
• Detailed understanding of different approaches to autonomous agent and robot architectures, and the ability to critically evaluate their advantages and disadvantages in different contexts.
• Practice in the implementation of simple AI systems using a suitable language

LEARNING OUTCOMES – PERSONAL ABILITIES
• Identification, representation and solution of problems
• Research skills and report writing
• Practice in the use of ICT, numeracy and presentation skills

SYLLABUS
• Search algorithms (depth first search, breadth first search, uniform cost search, A* search)
• constraint satisfaction problems;
• games (min-max, alpha-beta pruning);
F29AI Artificial Intelligence and Intelligent Agents

- logic, resolution, introductory logic programming
- knowledge representation – logic, rules, frames
- goal and data-driven reasoning
- practical rule-based programming
- Overview of main fields of AI (Vision, Learning, Knowledge Engineering)
- In depth view of one field of AI (e.g. Planning, Natural language)
- Autonomous agents
- Applications of AI
- AI programming

NOTE:- Elementary knowledge of logic at the level of undergraduate Computer Science. Knowledge of high-level programming language concepts.

COURSE RELATIONSHIPS

N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>