COURSE DETAILS
Course Code: F28SG
Full Course Title: Introduction to Data Structures & Algorithms
SCQF Level: 8
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes
Postgraduate Taught: No
Postgraduate Research: No

Additional Information:
Course being delivered at the specified campus(es) and also by a collaborative partner; Ocean University of China on BEng Robotics programme.

COURSE AIMS
To develop further skills and techniques in programming in a high-level language. The ability to construct data structures in a high level language, and implementation algorithms over these data structures.

LEARNING OUTCOMES – SUBJECT MASTERY

• To understand properties of and algorithms for fundamental static, dynamic and linked data structures
• To know when to deploy fundamental data structures and algorithms in practical problem solving
• To gain mastery of fundamental linear and recursive programming techniques
• To know when to deploy linear and recursive programming techniques in practical problem solving
• To understand fundamental techniques for processing very large data sets from files
• To gain skill in elementary analyses of fundamental algorithms and data structures to give insight into their time and space complexity bounds
• To understand correspondences between different programming techniques
• To understand correspondences between different data structures and algorithms
• To make effective usage of version control in software development tasks

LEARNING OUTCOMES – PERSONAL ABILITIES

• To understand how the choice of algorithms and data structures determines the efficacy of proposed solutions to problems
• To be able to explain the implications of choosing particular algorithms and data structures for the time and space behaviour of solutions.

SYLLABUS

• static structures – arrays
• linear techniques e.g. search, delete, update
• dynamic structures - stacks & queues
• recursive techniques – linear recursion, accumulation recursion
• sorting & searching e.g. binary search, linear sorting, divide and conquer sorting
• linked structures – lists and trees: construction, traversal, delete, update
F28SG Introduction to Data Structures & Algorithms

- introductory complexity & "big O" notation
- introduction to parallelism and concurrency

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F27SA</td>
<td>7</td>
<td>Software Development 1</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>F27SB</td>
<td>7</td>
<td>Software Development 2</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>50</td>
<td>120</td>
<td>Assessment</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>50</td>
<td>120</td>
<td>Assessment</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Assessment</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

ALP - Assessment is 100% examination. Summative coursework will be assessed by the ALP and moderated by HWU. All summative coursework must be completed to a satisfactory standard (Grade D) for a student to pass the course but will not form part of a student's final grade.