COURSE DETAILS
Course Code: F20DV
Full Course Title: Data Visualisation and Analytics
SCQF Level: 10
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes Postgraduate Taught: No Postgraduate Research: No

Additional Information:
Course is moving from Semester 1 to Semester 2 from 201920

COURSE AIMS
• To provide students with the theory, principles and tools to enable them:
• To create engaging and intuitive graphical and interactive applications that allow users to search, explore, reveal, partition, understand, discover and communicate the structure and information in large data sets;
• To convey ideas effectively, considering both aesthetic form and required functionality that will provide insights into different types of dataset (big data, complex data, heterogeneous data, linked data, dynamic data, dirty data);
• To stimulate user engagement, attention and discovery;
• To elicit main requirements of such systems;
• To be able to implement interactive web-based visualisation systems and assess their effectiveness.

LEARNING OUTCOMES – SUBJECT MASTERY
• Understanding of the data visualisation and data analysis processes.
• Knowledge of different infographic types, interactivity and design choices.
• Knowledge of different information and data types.
• Demonstrate a critical awareness of the main types of information and the appropriateness and effectiveness of associated visualisation and analysis techniques.

LEARNING OUTCOMES – PERSONAL ABILITIES
• Rational problem identification, concepualisation and definition.
• Critical analysis and solution selection.
• Exercise autonomy, initiative, and creativity in the application of data visualisation & analysis techniques.
• Demonstrate critical reflection on system development and performance (PDP).
• Communicate with peers, senior colleagues and specialists (PDP).

SYLLABUS
Overall aims:
• Use case scenarios (browsing, search, engagement, summarisation, brain storming)
F20DV Data Visualisation and Analytics

- Example data sets and visualisations, problems of big data
- Data source types
- Design principles
- Visualisation toolkits and programming
- Data, information and display/infographic types
- Abstraction methods including clustering, topic modelling, dimensional reduction
- Interaction (exploration, browsing, filtering, focussing)

Prerequisites: Numeracy and basic OO programming ability (3rd year CS)

COURSE RELATIONSHIPS
N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>70</td>
<td></td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>30</td>
<td>60</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>