COURSE DETAILS
- **Course Code:** F20BC
- **Full Course Title:** Biologically Inspired Computation
- **SCQF Level:** 10
- **SCAF Credits:** 15
- **Available as Elective:** No

DELIVERY LEVEL
- **Undergraduate:** Yes
- **Postgraduate Taught:** No
- **Postgraduate Research:** No

COURSE AIMS
Traditional computation finds it either difficult or impossible to perform a certain key range of tasks associated with pattern recognition, problem solving and autonomous intelligence. Great progress towards designing software for such tasks has emerged by taking inspiration from a range of natural, mainly biological, systems.

The aims of this course are to:

- introduce an appreciation of the former
- introduce the main biologically-inspired algorithms and techniques which are now commonly researched and applied
- establish a practical understanding of the real-world problems to which these techniques may be fruitfully be applied.

LEARNING OUTCOMES – SUBJECT MASTERY

- Understanding of limitations of traditional computation.
- A critical understanding of the two most common biologically inspired computation methods, their limitations and areas of applicability.
- Understanding of how to apply one or more biologically inspired techniques in solving a practical problem.

LEARNING OUTCOMES – PERSONAL ABILITIES

- Identify approaches that can be used to apply bio-inspired methods to existing problems in optimisation and machine learning.
- Exercise reasonable levels of initiative in working with a bio-inspired method (courseworks) (PDP)
- Demonstrate a degree of critical reflection in assessing the performance of a bio-inspired method (courseworks) (PDP).

SYLLABUS

- Classical vs. Biologically-inspired computation,
- evolutionary algorithms (basic EA design, and how they are applied to a wide range of problems)
F20BC Biologically Inspired Computation

- swarm intelligence (ant colony methods, particle swarm optimisation)
- neural computation (perceptrons, multilayer perceptrons, associative networks)
- cellular automata

<table>
<thead>
<tr>
<th>COURSE RELATIONSHIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>F29AI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION AND ASSESSMENT METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edi</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>