COURSE DETAILS

Course Code: F18XH
Full Course Title: Mathematics for Engineers and Scientists 4
SCQF Level: 8
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>Yes</th>
<th>Postgraduate Taught:</th>
<th>No</th>
<th>Postgraduate Research:</th>
<th>No</th>
</tr>
</thead>
</table>

Additional Information:

COURSE AIMS

This aims to provide a fundamental course in the basic methods of mathematical modelling with emphasis on linear algebra. It will give an introduction to MATLAB as a programming language, which will be used for solving various mathematical problems related to science and engineering.

LEARNING OUTCOMES – SUBJECT MASTERY

By the end of the course, students should be able to:

- understand the basic terminology of linear algebra, Laplace transforms and analytic geometry.
- solve systems of linear equations by the method of Gaussian elimination.
- invert a matrix both by using Gaussian elimination and by computing cofactors.
- compute determinants, solve eigenvalue problems.
- understand how eigenvalue problems may arise in practical applications.
- diagonalize matrices.
- perform Laplace transforms and inverse Laplace transforms for most common functions.
- apply Laplace transforms to solve DEs and systems of DEs.
- perform basic vector operations.
- write equations of lines and planes and find angles between lines and planes.
- compute partial and directional derivatives of scalar and vector functions.
- write equations for piecewise approximation of curves and equations of tangent planes.
- apply Grad, Div and Curl operators.
- use MATLAB to: perform matrix and vector operations, solves systems of linear equations, find eigenvalues and eigenvectors of matrices, perform Laplace and inverse Laplace transforms, solve DEs.

LEARNING OUTCOMES – PERSONAL ABILITIES

- Demonstrate the ability to learn independently
- Demonstrate knowledge of an area of mathematics.
- Manage time, work to deadlines and prioritise workloads

SYLLABUS
F18XH Mathematics for Engineers and Scientists 4

Laplace Transform: Laplace Transforms, Inverse Laplace Transforms, Solving Differential Equations (DEs) and Systems of DEs with Laplace Transforms.

Linear Algebra: Systems of Linear Equations, Gaussian Elimination, Vectors and Matrices, Matrix Algebra, Inverse Matrices, Determinants, Eigenvectors and Eigenvalues, Applications to Differential Equations, Diagonalization of Matrices.

Note: 2nd year direct entry – A-Level/ AH in Mathematics Grade C or better or equivalent

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F17XE</td>
<td>7</td>
<td>Mathematics for Engineers and Scientists 1</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>F17XF</td>
<td>7</td>
<td>Mathematics for Engineers and Scientists 2</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION AND ASSESSMENT METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edi</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>