COURSE DETAILS

Course Code: F18NA
Full Course Title: Numerical Analysis A
SCQF Level: 8
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

Undergraduate: Yes
Postgraduate Taught: Yes
Postgraduate Research: No

Additional Information:

COURSE AIMS

To give an introduction to some of the basic methods of numerical analysis and the scientific computing package Python.

LEARNING OUTCOMES – SUBJECT MASTERY

- Understand basic methods of numerical analysis and the numerical approximation of solution to mathematical problems.
- Become familiar with the concept of numerical approximation.
- Use mathematical techniques which are required to approximate the solution of single nonlinear equations.
- Use mathematical techniques which are required to interpolate data.
- Use mathematical techniques which are required to approximate integrals.
- Use mathematical techniques which are required to approximate derivatives.
- Become familiar with the basics of the computer package Python.
- Understand the concept of conditionals in programming.
- Understand the concept of iteration in programming.
- Solve specific problems from the applied sciences using Python.

LEARNING OUTCOMES – PERSONAL ABILITIES

- Demonstrate the ability to learn independently

- Demonstrate knowledge of an area of mathematics.

- Manage time, work to deadlines and prioritise workloads

SYLLABUS

Introduction: What is numerical analysis? Approximate versus exact solutions of mathematical problems.
Introduction to Python: Basic operations, vectors and matrices, plotting graphs of functions, loops, conditional statements.

Solution of nonlinear algebraic equations: Approximating solutions of $f(x)=0$ using, e.g., the bisection, Newton and fixed-point methods.

Polynomial Interpolation: Approximating functions of one variable by interpolating polynomials.

Numerical Integration: Approximating integrals of functions of one or more variables using, e.g., Newton-Cotes methods, composite quadrature rules, Gaussian quadrature.

Numerical Differentiation: Approximating derivatives using finite differences, e.g., forward, backward and central difference methods.

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F17CA</td>
<td>7</td>
<td>Calculus A</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>F17CB</td>
<td>7</td>
<td>Calculus B</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>