COURSE DETAILS

Course Code: F11MP
Full Course Title: Partial Differential Equations
SCQF Level: 11
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

Undergraduate: Yes Postgraduate Taught: Yes Postgraduate Research: No

Additional Information:

COURSE AIMS

The module aims to provide a critical understanding of the basic theory of PDE's, the main properties of the classical equations in mathematical physics, the different concepts required to study nonlinear equations and the uses of PDE's in mathematical modelling.

LEARNING OUTCOMES – SUBJECT MASTERY

By the end of the course, students should be able to:

- classify linear second order PDE's
- derive the equation for characteristics for linear second order PDE's
- find characteristics for linear second order PDE's
- reduce hyperbolic linear second order PDE to a canonical form
- solve the Cauchy problem for a hyperbolic linear second order PDE (by reduction to canonical form)
- prove uniqueness of the solution of a Cauchy problem for the wave equation (by the energy method)
- express the solution of a Cauchy problem for the wave equation through "spherical means" (in dimension 2 and 3)
- understand the notion of well-posedness • demonstrate well-posedness of a Cauchy problem for the wave equation
- know the notion of the domains of influence and dependence
- analyse the structure of the domains of influence and dependence for the wave equation in dimension 1,2 and 3
- demonstrate time reversibility and finite speed of propagation for the wave equation
- prove that a solution of an initial value problem for the heat equation can be expressed through a Gaussian kernel
- explain an infinite speed of propagation and time irreversibility for the heat equation
- use the error function to express the solution of an initial value problem for the heat equation in the case of piece wise constant initial data
- formulate and prove the maximum principle for the heat equation in a bounded domain
- formulate and prove the maximum principle for the heat equation in the whole space
- demonstrate well-posedness of an initial value problem for the heat equation
- use Green's formulae to analyse the basic properties of harmonic functions
- prove uniqueness for the solutions of the Dirichlet and Neumann boundary value problem (by the energy method)
- prove the maximum principle for the Laplace operator
- prove uniqueness of the solution of the Dirichlet boundary value problem for Laplace's equation (using the maximum principle)
LEARNING OUTCOMES – PERSONAL ABILITIES

- Demonstrate the ability to learn independently
- Demonstrate knowledge of an area of mathematics.
- Manage time, work to deadlines and prioritise workloads

SYLLABUS

Linear second order equations: classification and reduction to canonical form of linear second order equations; solution of Cauchy problems for hyperbolic equations by reduction to canonical form; Well posed problems for partial differential equations.

The wave equation: energy method and uniqueness; solution by "spherical means"; well posedness of initial value problem.

The heat equation: solutions using Gaussian kernel; uniqueness; maximum principle for heat equation; well posedness of initial value problem.

Laplace's equation: basic properties of harmonic functions; maximum principle for boundary value problem; existence of solutions and well posedness of boundary value problems for Laplace's equation; Green's functions.

Nonlinear conservation laws: discontinuous solutions of conservation laws; jump condition; model of a traffic flow; uniqueness and the entropy condition; Cole-Hopf transformation.
F11MP Partial Differential Equations

Revision and problem solving

Additional material on PDEs

<table>
<thead>
<tr>
<th>COURSE RELATIONSHIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>F18CD</td>
</tr>
<tr>
<td>F18CF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION AND ASSESSMENT METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edi</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>