D1B1-AEN Bachelor of Engineering in Architectural Engineering

PROGRAMME DETAILS
Programme Code: D1B1-AEN
Department: Architectural Engineering
Main Award: BENGH - Bachelor of Engineering Hon
Full Award Title: Bachelor of Engineering in Architectural Engineering
Level: Undergraduate

LOCATION OF STUDY
<table>
<thead>
<tr>
<th>Location</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edinburgh</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Scottish Borders</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Orkney</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Dubai</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Approved Learning Partner</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Independent Distance Learners</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Collaborative Learning Partner</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

ASSOCIATED AWARDS

<table>
<thead>
<tr>
<th>Programme Code</th>
<th>Award</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1B1-AEN</td>
<td>BENGH</td>
<td>Bachelor of Engineering in Architectural Engineering</td>
</tr>
<tr>
<td>D1B1-ZZZ</td>
<td>BENGGO</td>
<td>Bachelor of Engineering in Architectural Engineering</td>
</tr>
</tbody>
</table>

ACCREDITATION

Programme Accredited by

The Chartered Institution of Building Services Engineers (CIBSE)

The Energy Institute (EI)

LEARNING OUTCOMES – SUBJECT MASTERY
Understanding, Knowledge and Cognitive Skills

- Fundamentals of the main Architectural Engineering specialisms;
- Building Services Engineering theory, design and practice.
- Energy Efficient Construction, Sustainable Development and Environmental friendly design.
- Behavioural responses of people to their environments.
- Fluid mechanics
- Water Conservation
- Aural, Visual and Thermal Environmental Assessment
- Construction Technology and Principles of Structures.
- Health and Safety regulations.
- Principles of Management, Contracts and Procurement and Value and Risk management.
- Sustainable building design
- Carbon management.

In addition, students should be aware of the regulatory requirements, the needs of society and ethical correctness within the context of the built environment and professional practice, and understand the nature of the various relationships that exist within the construction industry in addition to the following:
D1B1-AEN Bachelor of Engineering in Architectural Engineering

- Management and business practices which form the basis of modern Architectural Engineering management.
- Fundamentals of Mathematics and Science as applicable in the context of sustainable building design and Architectural Engineering.
- Comprehensive understanding and knowledge of the concepts, principles and theories of specialist technical issues, as selected by the student to meet their professional aspirations.
- Transfer problem-solving skills to a variety of contexts
- Integrate theory and practice
- Apply numerical, scientific and management skills

Scholarship, Enquiry and Research (Research Informed Learning)

- Conduct and analyse results from laboratory exercises relevant to the science of engineering
- Ability to plan, conduct and report a self-directed research project
- Transfer problem-solving skills to a variety of contexts
- Apply numerical skills and engineering knowledge in the analysis of a novel problem.
- Integrate theory and practice
- Apply theory to sustainable building design in collaboration with colleagues and industrial partners.

LEARNING OUTCOMES – PERSONAL ABILITIES

Industrial, Commercial and Professional Practice

- Appreciate the roles of the Architectural Engineer
- Appreciate the roles of other Built Environment professions.
- Use British and International Standards and codes of practice in project, laboratory and design tasks.
- Management and business practices which form the basis of modern Architectural Engineering management.
- The ethics and standards relevant to professional engineering practice.
- Framework and practice with regard to health and safety

Autonomy, Accountability and Working With Others

- Work effectively within a small team.
- Interact constructively with other professions in the Built Environment in a multi-disciplinary team
- The social and environmental impact of Architectural Engineering.

Communication, Numeracy & Information and Communications Technology

- Clearly and concisely report results from laboratory and desk study investigations relevant to the science of engineering
- Effective communication by written, oral and graphical methods.
- Appreciation of the mathematical basis of theory and practical applications within core subject areas.
- Use of the Internet to source, gather and retrieve information
- Use of IT to generate and develop information and present it in the form of written work.
Use of common industrially applied computing packages to extract, manipulate, analyse and present quantitative design data and designed solutions.
CV preparation

APPROACHES TO TEACHING AND LEARNING

The Architectural Engineering programme provides a flexible, student-centred, and resource-based learning and teaching environment, which actively promotes a deep approach to learning. At each stage, learning and teaching resources include lectures, tutorials, seminars, workshops and task-based activities. As the course progresses, the emphasis switches from group based lectures to individual student-led tutorials and small group self learning activities, and students are encouraged to take greater responsibility for their own learning. The techniques adopted include library and computer-based facilities, specific project based modules designed to integrate the knowledge based covered at each stage and develop transferable skills, directed reading, case studies, dissertations, coursework and problem-solving classes.

Approaches to learning and teaching are reviewed and assessed by the course Leader and Director of Studies on an annual basis. The review and redesign of techniques and methods adopted are obtained from student questionnaires, comments from the Student-Staff Committee, pass rates and external examiners’ reports.

Specific details about learning and teaching methods are provided in the appropriate module descriptors.

EDUCATIONAL AIMS OF THE PROGRAMME

The Architectural Engineering programme aims to:

- Provide students with a broad understanding of a wide range of aspects of the built environment
- Provide appropriate depth of technical knowledge and understanding of the key engineering topics within architectural engineering
- Equip students with a sound basis in fundamental engineering principles and their application in the context of sustainable building design and analysis.
- Match a professional and technical education to the needs and aspirations of individuals.
- Produce high quality graduates with the understanding, knowledge, skills and personal qualities required to undertake a wide range of careers across the construction industry in building, general contracting, consultancy or advanced research.
- Develop problem-solving and conceptual skills and the ability to apply such skills to solve real design and decision problems.
- Enable students to undertake complex engineering projects of a multidisciplinary nature and of direct relevance to industry.
- Encourage awareness of the engineering industry and the development of professional competencies
through the Professional Development Programme.

- Ensure students have an awareness of the importance of safety in construction, the methodologies for addressing it and the legislative framework for its enforcement.
- Provide a thorough grounding in principles of sustainable Building Design, an understanding of approaches to minimise environmental impact, and the means of estimating such impacts.
- Offer an educational environment which satisfies academic requirements for Chartered Engineer status and Membership of The Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute (EI).
- provide an awareness of managerial issues within the built environment
- Establish the framework in which architectural engineers function, in collaboration with industrial partners.

The general aim being to produce graduates who can:

- confidently and competently deal with complex situations
- make professionally competent judgements in the workplace environment
- demonstrate effective self-management in planning and implementing solutions to problems
- demonstrate scholarship through development of personal skills and knowledge
- communicate effectively using subject specific knowledge and skills
- apply subject-related transferable skills in building services engineering professional practice.

ASSESSMENT POLICIES

The assessment policy for courses on the Architectural Engineering Programme is to tailor the methods of assessment to the subject being taught and the nature of the classes so that understanding, knowledge and subject-specific skills are assessed using a variety of approaches. These include essays, reports, written examinations, practical exercises, presentations, group and individual projects and the dissertation. What is best for each module is moderated by seeking a balance of modes within terms and stages.

Formal assessment in courses teaching subject specific understanding, knowledge and skills is by either coursework or unseen written examinations but there are some module which are assessed by both. The examinations are summative while coursework may used to assess understanding and subject specific skills on a formative or summative basis. Continuous assessment is more common in modules explicitly designed to develop cognitive and core skills, and professional awareness. This approach to assessment enables staff and students to monitor the establishment and honing of transferable skills in practical exercises that are directly applicable to the built environment.

The methods of assessment adopted are continually reviewed. Specific details about assessment methods are provided in
the appropriate module descriptor.

PROGRAMME STRUCTURE

Mandatory Courses

<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>SBC</th>
<th>Orcney</th>
<th>Dubai</th>
<th>HWUM</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>ALP</th>
<th>Other</th>
<th>Stage</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>D17DE</td>
<td>Introduction to Design</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>D27MA</td>
<td>Mechanics A</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>D37TA</td>
<td>Construction Technology 1</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>F17XA</td>
<td>Mathematics for Engineers and Scientists 1</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>D18BT</td>
<td>Building Services Technology</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>D27MB</td>
<td>Mechanics B</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>D47IE</td>
<td>Introduction to the Environment</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>1</td>
<td>2</td>
<td>F17XB</td>
<td>Mathematics for Engineers and Scientists 2</td>
<td>15</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>2</td>
<td>1</td>
<td>D18AB</td>
<td>Acoustics and Architectural Design</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>2</td>
<td>1</td>
<td>D18PA</td>
<td>Design Project</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>2</td>
<td>1</td>
<td>D38TA</td>
<td>Construction Technology 2</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>2</td>
<td>2</td>
<td>D18BG</td>
<td>Environment and Behaviour</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>2</td>
<td>2</td>
<td>D38EC</td>
<td>eConstruction</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>2</td>
<td>2</td>
<td>F78SC</td>
<td>Statistics for Science</td>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>1</td>
<td>D10LP</td>
<td>Laboratory Project</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>1</td>
<td>D19CX</td>
<td>Critical Building Analysis</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>1</td>
<td>D19EL</td>
<td>Electrical and Lighting Services for Buildings</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>1</td>
<td>D19SO</td>
<td>Design Software Applications</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>2</td>
<td>D19DI</td>
<td>Design Issues</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>2</td>
<td>D19EB</td>
<td>Energy and Buildings</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>2</td>
<td>D19TP</td>
<td>Thermal Performance Studies</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>3</td>
<td>2</td>
<td>D29EV</td>
<td>Environmental Engineering A</td>
<td>15</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>4</td>
<td>1</td>
<td>D10YD</td>
<td>Design Project (AE) (S1)</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>4</td>
<td>1</td>
<td>D10ZA</td>
<td>Dissertation (AE) (S1)</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D1B1-AEN Bachelor of Engineering in Architectural Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X 4 2 D10IS</td>
<td>Sustainable and Intelligent Buildings</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>X X X 4 2 D10YF</td>
<td>Design Project (AE) (S2)</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>X X X 4 2 D10ZB</td>
<td>Dissertation (AE) (S2)</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>X X X 4 2 D30IC</td>
<td>Innovation in Construction Practice</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Optional Courses

<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>SBC</th>
<th>Orkney</th>
<th>Dubai</th>
<th>HWUM</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>ALP</th>
<th>Other</th>
<th>Stage</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X X 2 1 D28HA</td>
<td>Hydraulics & Hydrology A</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X X X 2 1 D28SM</td>
<td>Surveying and Monitoring in the Built and Natural Environment</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X X X 2 2 C68GE</td>
<td>Global Communication in English</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X X X 2 2 D68HI</td>
<td>History and Theories of Architecture</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X X X 4 1 D10LP</td>
<td>Laboratory Project</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>X X X 4 1 D31PZ</td>
<td>Contracts and Procurement</td>
<td>15</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>X X X 4 1 D39PZ</td>
<td>Procurement and Contracts</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVES (UG)

- **Stage 1**: N/A
- **Stage 2**: N/A
- **Stage 3**: N/A
- **Stage 4**: N/A
- **Stage 5**: N/A

COMPOSITION AND STAGE NOTES (UG)

Stage 1

8 taught courses - 8 mandatory

There will be a 3-4 day UK residential fieldtrip in this Stage. Architectural Engineering students who wish to change to another programme within the discipline can do so at the end of Stage 1

<table>
<thead>
<tr>
<th>Mandatory Credits 1</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits 1</td>
<td></td>
</tr>
<tr>
<td>Elective Credits 1</td>
<td></td>
</tr>
<tr>
<td>Total 1</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 2

8 taught courses - 6 mandatory and 2 optional
Architectural Engineering students who wish to change to another programme within the discipline can do so at the end of Stage 2.

As C68GE is the only semester 2 option for Edinburgh students, it is in effect mandatory.

D28HA and D68HI show as options for Dubai, they are in effect mandatory as there is only 1 option offered per semester.

<table>
<thead>
<tr>
<th>Mandatory Credits</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits</td>
<td>30</td>
</tr>
<tr>
<td>Elective Credits</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 3

8 taught courses - 8 mandatory

There will be a 5 to 7 day overseas residential fieldtrip in this Stage. All Stage 3 courses, at SCQF levels 9 and 10, run by the School of Energy, Geoscience, Infrastructure and Society are qualifying courses for the BSc and BEng degrees.

D10LP Laboratory Project will be taught across two cohorts for the academic year 2018-19, as Year3s and Year 4s will both have it in their curriculum in a transitional year. Year 4s in 2018 will take this instead of D31PZ Contracts and Procurement. No other courses are affected.

<table>
<thead>
<tr>
<th>Mandatory Credits</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits</td>
<td></td>
</tr>
<tr>
<td>Elective Credits</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 4

7 taught courses - 6 mandatory and 1 optional

All Stage 4 courses are qualifying courses. One week of Design Project (Semester 1) contains a collaborative group exercise.

D39PZ (Procurement and Contracts) will be offered on the Dubai campus in place of D31PZ (Contracts and Procurement) which will be offered in Edinburgh. The courses are very similar in content and meet criteria of the accrediting body.

D10LP Laboratory Project will be taught across two cohorts for the academic year 2018-19, as Year3s and Year 4s will both have it in their curriculum in a transitional year. Year 4s in 2018 will take this instead of D31PZ Contracts and Procurement. No other courses are affected.

<table>
<thead>
<tr>
<th>Mandatory Credits</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits</td>
<td>15</td>
</tr>
<tr>
<td>Elective Credits</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>
D1B1-AEN Bachelor of Engineering in Architectural Engineering

Stage 5

<table>
<thead>
<tr>
<th>Credits Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>5</td>
</tr>
<tr>
<td>Optional</td>
<td>5</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

ASSESSMENT AND PROGRESSION (UG)

Reassessment Opportunities

1. A student who has been awarded a Grade D, Grade E or a Grade F in a course may be re-assessed in that course.
2. A student shall be permitted only one re-assessment opportunity to be taken at the Resit diet of examination following the first assessment of the course.
3. A student shall not be re-assessed in any qualifying course taken in the final stage of a course of study.
4. The Progression Board may permit a student to be re-assessed in any qualifying course not taken in the final stage in order to gain credits for the course, provided that the mark or grade obtained in the first assessment of any such course is used in determining the classification of the degree to be awarded.

Progression Requirements

Part A. The minimum number of credits required to progress through each stage are as follows

<table>
<thead>
<tr>
<th>Stage</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>Requires 120 SCQF credits including a minimum of 120 credits at Level 7</td>
</tr>
<tr>
<td>2 to 3</td>
<td>Requires 240 SCQF credits including a minimum of 90 credits at Level 8</td>
</tr>
<tr>
<td>3 to 4</td>
<td>Requires 360 SCQF credits including a minimum of 60 credits at Level 9</td>
</tr>
<tr>
<td>4 to 5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Part B. The minimum grade of D is required in the following courses

<table>
<thead>
<tr>
<th>Stage</th>
<th>Grade Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
</tr>
</tbody>
</table>

AWARDS, CREDITS AND LEVEL (UG)

Part A. Credit Requirements

<table>
<thead>
<tr>
<th>Degree Type</th>
<th>Overall Credits</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Masters</td>
<td>600</td>
<td>600 SCQF credits including a minimum of 120 credit at Level 11</td>
</tr>
<tr>
<td>Honours Degree (inc.MA)</td>
<td>480</td>
<td>480 SCQF credits including a minimum of 180 credit at Level 9 and 10 of which at least 90 credits at Level 10</td>
</tr>
<tr>
<td>Ordinary or General Degree</td>
<td>360</td>
<td>360 SCQF credits including a minimum of 60 credit at Level 9</td>
</tr>
<tr>
<td>Diploma of Higher Education</td>
<td>240</td>
<td>240 SCQF credits including a minimum of 90 credit at Level 8</td>
</tr>
<tr>
<td>Certificate of Higher Education</td>
<td>120</td>
<td>120 SCQF credits including a minimum of 90 credit at Level 7</td>
</tr>
</tbody>
</table>

Part B. Mark/Grade Requirements

<table>
<thead>
<tr>
<th>Degree Type</th>
<th>Overall Mark</th>
<th>Overall Grade</th>
<th>Basis of Overall Mark/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Masters</td>
<td>>=50%</td>
<td>C</td>
<td>Credit Weighted Average >=50% over all qualifying courses at Grades A-D</td>
</tr>
<tr>
<td>Honours Degree (inc.MA)</td>
<td>>=40%</td>
<td>D</td>
<td>1st: Credit Weighted Average >=70% Over all qualifying courses at grades A-D. 2.1: Credit Weighted Average >=60% Over all qualifying courses at grades A-D. 2.2: Credit Weighted Average >=50% Over all qualifying courses at grades A-D. 3rd: Credit Weighted Average >=40% Over all qualifying courses at grades A-D.</td>
</tr>
<tr>
<td>Ordinary or General Degree</td>
<td>>=40%</td>
<td>D</td>
<td>Minimum of grade D in all pre-requisite courses.</td>
</tr>
<tr>
<td>Diploma of Higher Education</td>
<td>>=40%</td>
<td>D</td>
<td>Minimum of grade D in all pre-requisite courses.</td>
</tr>
</tbody>
</table>
D1B1-AEN Bachelor of Engineering in Architectural Engineering

Certificate of Higher Education | >=40% | D | Minimum of grade D in all pre-requisite courses.

<table>
<thead>
<tr>
<th>DURATION OF STUDY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IN MONTHS</td>
<td>Full-time</td>
</tr>
<tr>
<td>Integrated Masters</td>
<td>60</td>
</tr>
<tr>
<td>Honours Degree</td>
<td>48</td>
</tr>
<tr>
<td>Ordinary or General Degree</td>
<td>36</td>
</tr>
<tr>
<td>Diploma of Higher Education</td>
<td>24</td>
</tr>
<tr>
<td>Certificate of Higher Education</td>
<td>12</td>
</tr>
</tbody>
</table>