COURSE DETAILS
Course Code: F79SU
Full Course Title: Survival Models
SCQF Level: 9
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes Postgraduate Taught: No Postgraduate Research: No

Additional Information:

COURSE AIMS
- To understand the use of mathematical models of mortality, illness and other life history events in the study of processes of actuarial interest
- To be able to estimate the parameters in these models, mainly by maximum likelihood
- To apply methods of smoothing observed rates of mortality and to test the goodness-of-fit of the models

LEARNING OUTCOMES – SUBJECT MASTERY
After studying this module, students should be able to:

- Estimate a survival function using the Kaplan-Meier method
- Find the partial likelihood function in the Cox model
- Use the partial likelihood to estimate parameters (with standard errors) in the Cox model
- Write down an appropriate Markov multi-state model for a system with multiple transfers
- Obtain the Kolmogorov Forward Equations in a Markov multi-state model
- Derive the likelihood function in a Markov multi-state model
- Use the likelihood function to estimate parameters (with standard errors) in a Markov multi-state model
- Obtain the likelihood function in the 2-state model with states Alive and Dead under the binomial or Poisson models
- Use any of two assumptions (uniform distribution of death, constant force of mortality) to reduce the binomial likelihood to a function of a single parameter, and estimate the parameter
- Understand the need for graduation of observed rates of mortality and be familiar with the main methodologies in this area of survival modelling
- To apply a range of appropriate tests to check for adherence of a graduation to data
- Understand the effects of duplicate policies on estimates of mortality
- Calculate exactly and from census data the central exposed to risk
- Use the stochastic mortality models to obtain forecasts for future mortality rates

LEARNING OUTCOMES – PERSONAL ABILITIES
At the end of the module, students should be able to:

- Demonstrate the ability to learn independently
- Manage time work to deadlines and prioritise workloads
• Present results in a way which demonstrates that they have understood the technical and broader issues of modelling mortality and morbidity data

SYLLABUS

• Estimating the lifetime distribution
• Markov models: theory
• Markov models: data and estimation
• Binomial and Poisson models of mortality
• Graduation and statistical tests
• Exposed to risk
• Projecting Mortality Rates

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F78PA</td>
<td>8</td>
<td>Probability and Statistics A</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>F78PB</td>
<td>8</td>
<td>Probability and Statistics B</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>F79SP</td>
<td>9</td>
<td>Stochastic Processes</td>
<td>School of Math and Comp Sci.</td>
<td>Taught Synoptic</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>80</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>20</td>
<td></td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td></td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>