COURSE DETAILS

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>F79PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Course Title:</td>
<td>Statistics for Social Science</td>
</tr>
<tr>
<td>SCQF Level:</td>
<td>9</td>
</tr>
<tr>
<td>SCAF Credits:</td>
<td>15</td>
</tr>
<tr>
<td>Available as Elective:</td>
<td>No</td>
</tr>
</tbody>
</table>

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>Yes</th>
<th>Postgraduate Taught:</th>
<th>Yes</th>
<th>Postgraduate Research:</th>
<th>No</th>
</tr>
</thead>
</table>

COURSE AIMS

- To develop an understanding of specialised multivariate statistical techniques applied in the social sciences including linear modelling and generalised linear modelling methods
- To develop proficiency in applying these methods in the analysis of experimental data using standard statistical packages
- To further develop effective skills for writing reports and reporting conclusions of scientific study.

LEARNING OUTCOMES – SUBJECT MASTERY

After studying this module, students should be able to:

- Understand the statistical theory of linear, nonlinear and multivariate methods in the social sciences
- Apply these methods to investigate practical problems in a social science context (principally psychology)
- Use their statistical expertise to draw valid conclusions from experimental data

LEARNING OUTCOMES – PERSONAL ABILITIES

At the end of this module students should be able to:

- Demonstrate facility with the main statistical package used in social sciences (SPSS)
- Demonstrate an appreciation of the scientific problems to which statistical methods can be applied in psychology and other social sciences
- Present results from a statistical analysis in a way that demonstrates that they have understood the technical and broader issues of statistical methodology as applied in practical situations
- Manage time in order to meet report deadlines and to discuss statistical problems confidently with peers and colleagues

SYLLABUS
Review of key statistical background: including probability as a frequency versus degree of belief, standard distributions, descriptive statistics & graphical methods, calculation and interpretation of confidence intervals for standard sampling situations; theory of hypothesis testing and simple tests of goodness of fit (Chi-squared, Kolmogorov-Smirnov); comparison of populations - including t-tests and non-parametric methods;

Linear modelling techniques: Regression (univariate and multivariate), analysis of variance (1-way, 2-way), definition and use of contrasts, analysis of Covariance, regression and ANOVA as special cases of Generalised Linear Models (GLM).

Multivariate methods: Principal component analysis and factor analysis - theoretical basis and practical application to data analysis in psychology

Further modelling methods: Generalised Linear Modelling, loglinear models, logit, probit analysis

Principles of questionnaire design

Reassessment not available for final year students