COURSE DETAILS

Course Code: F77SB
Full Course Title: Introduction to Statistical Science B
SCQF Level: 7
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>Yes</th>
<th>Postgraduate Taught:</th>
<th>Yes</th>
<th>Postgraduate Research:</th>
<th>No</th>
</tr>
</thead>
</table>

`Additional Information:`

COURSE AIMS

- To develop simple probability models for data
- To understand important features of these models

LEARNING OUTCOMES – SUBJECT MASTERY

After studying this course, students should be able to:

- Carry out probability calculations for basic discrete probability models
- Determine the distribution of a discrete random variable and carry out related probability calculations
- Compute the expected value, variance, and standard deviation of a discrete random variable
- Recognise the experimental situations that are modelled by Binomial, Geometric, Hypergeometric, and Poisson random variables
- Use indicator variables to calculate expected value and variance.
- Use probability inequalities to obtain probability bounds.

LEARNING OUTCOMES – PERSONAL ABILITIES

At the end of the module, students should be able to:

- Demonstrate the ability to learn independently
- Manage time, work to deadlines and prioritise workloads
- Use an appropriate computer package to investigate the properties of random samples and to present and describe data
- Provide coherent explanation for various standard calculations in discrete probability

SYLLABUS

- Introduction to discrete probability models including sample spaces, probability functions, axioms of probability and consequences of the axioms
- Conditional probability, Partition Theorem, Bayes' Theorem and independence
- Special probability models for random experiments
F77SB Introduction to Statistical Science B

- Simple equally likely models
- Sampling without replacement from a finite populations
- Models for a sequence of independent sub-experiments, including Bernoulli trials, Binomial and Geometric models

- Fundamental discrete random variables: Binomial, Geometric, Negative Binomial, Hypergeometric, and Poisson random variables.
- The Poisson approximation of the Binomial and the Binomial approximation of the Hypergeometric
- Expected value, variance and standard deviation of a random variable and the properties of these quantities.
- Indicator variables and simple probability inequalities.

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F77SA</td>
<td>7</td>
<td>Introduction to Statistical Science A</td>
<td>School of Math and Comp Sci.</td>
<td>Linked</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>80</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>20</td>
<td></td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>