COURSE DETAILS

Course Code: F71DA
Full Course Title: Data Analytics and Time Series Analysis
SCQF Level: 11
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

Undergraduate: No Postgraduate Taught: Yes Postgraduate Research: No

Additional Information:

COURSE AIMS

This course aims to provide a good understanding of the concepts and methods used in time series analysis and advanced techniques for data analytics.

LEARNING OUTCOMES – SUBJECT MASTERY

On completion of this course the student should be able to:

- demonstrate knowledge of, and a critical understanding of, the main concepts of time series analysis
- demonstrate knowledge of, and a critical understanding of, the main properties of MA, AR, ARMA, ARIMA, and RW models
- use least squares, maximum likelihood and other methods to fit time series models to the data
- select proper model(s) using e.g. AIC or BIC
- fit trend and seasonal trend to the data, and fit time series models to the residuals
- understand methods used to produce forecasts
- understand ARCH, GARCH and other nonlinear time series models and their applications for modelling of financial data
- understand time series data well, and perform basic calculations and summaries of time series data
- understand and critically assess time series models fitted by computer packages
- use a range of time series models to produce forecasts
- understand the elementary principles of machine learning
- apply copulas to multivariate data
- understand the basic concepts of extreme value theory

LEARNING OUTCOMES – PERSONAL ABILITIES

At the end of the course student should be able to:
F71DA Data Analytics and Time Series Analysis

- Demonstrate the ability to learn independently
- Manage time, work to deadlines and prioritise workloads
- communicate meaningfully and productively with others (including practitioners and professionals in the financial services industry) on data analytics issues

Students should be able to

- use statistical software to fit time series models to data and
- analyse empirical data using modern data analytics techniques

SYLLABUS

- Basic time series concepts and operators
- Stationary processes, general linear filter, autocorrelation function and spectrum
- MA, AR and ARMA processes
- ARIMA processes and Random Walk (RW) with or without drift
- Model estimation and model selection
- Models with trend and/or seasonality
- Forecasting
- Introduction to nonlinear processes
- Elementary principles of machine learning
- Copulas
- Extreme value theory

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F71TS</td>
<td>11</td>
<td>Time Series Analysis</td>
<td>School of Math and Comp Sci.</td>
<td>Taught Synoptic</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td></td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>