COURSE DETAILS
Course Code: F28LL
Full Course Title: Programming Languages
SCQF Level: 8
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes Postgraduate Taught: No Postgraduate Research: No
Additional Information:

COURSE AIMS
- To gain understanding of different language paradigms
- To gain understanding of defining concepts of programming languages
- To develop skills in programming in languages from key paradigms

LEARNING OUTCOMES – SUBJECT MASTERY
- understanding of distinguishing characteristics of language paradigms
- understanding of relationships between languages
- understanding of generic language concepts
- ability to program in languages from key paradigms
- ability to use tool sets for these languages
- ability to relate learned knowledge to work based computing projects

LEARNING OUTCOMES – PERSONAL ABILITIES
- Understanding of how to choose an appropriate language for different problem domains
- Can relate and/or apply learned knowledge at work place
- Take significant responsibility for their work and for a range of resources

- To be aware of distinctive features of programming languages and of the impact of their choice on industrial projects

- Can communicate effectively with work colleagues on learned issues

SYLLABUS
- Overviews of language history, definition (lexicon, syntax, semantics), implementation (compiler, interpreter, virtual machine)
- Overviews of language paradigms: e.g. imperative (high-level, system, low-level), declarative (functional, logic), concurrency/parallelism
F28LL Programming Languages

- Overviews of programming language concepts: variable, lvalue & rvalue, assignment (sharing/copying), data abstraction (sequential, structured, recursive, shared/distributed), type mechanisms (weak/strong, static/dynamic, ad-hoc/parametric polymorphism), declaration (scope, extent), control abstraction (sequence, choice, repetition, block, procedure, labels/jumps, exceptions, processes), expression abstraction (functions), parameter mechanisms (value, reference), evaluation mechanisms (strict/lazy, ordered/unordered, concurrent).

- An introduction to programming in languages from key paradigms e.g.
 - scripting: e.g. Python
 - declarative/functional: e.g. SML
 - declarative/logic: e.g. Prolog

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F27SB</td>
<td>7</td>
<td>Software Development 2</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
<tr>
<td>F27CX</td>
<td>7</td>
<td>Introduction to Computer Systems</td>
<td>School of Math and Comp Sci.</td>
<td>Pre-Requisite</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>100</td>
<td>Assessment</td>
<td>All Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>100</td>
<td>Reassessment</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>