COURSE DETAILS

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>F21GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Course Title:</td>
<td>Computer Games Programming</td>
</tr>
<tr>
<td>SCQF Level:</td>
<td>11</td>
</tr>
<tr>
<td>SCAF Credits:</td>
<td>15</td>
</tr>
<tr>
<td>Available as Elective:</td>
<td>No</td>
</tr>
</tbody>
</table>

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>Yes</th>
<th>Postgraduate Taught:</th>
<th>Yes</th>
<th>Postgraduate Research:</th>
<th>Yes</th>
</tr>
</thead>
</table>

COURSE AIMS

To develop programming skills and techniques specific to the area of 2D and 3D computer games

LEARNING OUTCOMES – SUBJECT MASTERY

- Critical appreciation of game theory and computer games history, genres and impact
- Ability to critically evaluate game design concepts, elements and characters.
- Critical understanding of available tools and their application.
- Knowledge of algorithms for path planning and navigation
- Understanding and knowledge of physically-based modelling in games and selection of techniques.
- Understanding and knowledge of AI techniques in games and selection of techniques.
- Ability to design and implement a small-scale game using 2D and 3D tools.
- Practical skills in graphics and AI programming in the computer games context.

LEARNING OUTCOMES – PERSONAL ABILITIES

- Ability to think and plan in three dimensions
- Representation of, planning for, and solution of problems

Team working skills

Ability to plan, design, prototype critically evaluate and communicate a game

SYLLABUS

- Computer Games Design Concepts (Genres, Narrative and Fun).
- Elements of Game Design (Formal, Dramatic and System Dynamics).
- Character and World Design.
• Design Programming Patterns (Input, loops, structures, objects and optimisation).
• Games Creation Concepts (Conceptualisation, Prototyping, Playtesting).
• Game-state, simulator, renderer, (hierarchical) controllers.
• Tools, environments and coding practices— e.g. graphics, C++ and engines.
• 2D and 3D game programming techniques.
• Physically-based modelling, particle systems, flocking.
• Obstacle avoidance and path planning.
• Group movement.
• Learning and adaptation in games.
• Action and behaviour selection.
• Procedural Generation.
• Course summary and review.

NOTE: A pre-requisite of this course is that students must have C++ programming skills

COURSE RELATIONSHIPS
N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>50</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>50</td>
<td></td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>