**Course Code:** F21DP  
**Full Course Title:** Distributed & Parallel Technologies  
**SCQF Level:** 11  
**SCAF Credits:** 15  
**Available as Elective:** No

### Delivery Level
<table>
<thead>
<tr>
<th>Undergraduate</th>
<th>Yes</th>
<th>Postgraduate Taught</th>
<th>Yes</th>
<th>Postgraduate Research</th>
<th>No</th>
</tr>
</thead>
</table>

**Additional Information:**

### Course Aims
- To explore technologies and techniques underlying advanced software development for parallel and distributed systems.
- Review the principal abstractions, methods and techniques used in distributed and parallel programming.
- Develop an understanding of parallel programming on heterogeneous architectures including accelerators such as GPUs.
- Enable students to appreciate critically a range of distributed and parallel computing technologies.

### Learning Outcomes – Subject Mastery
- Understanding of foundational concepts of distributed and parallel software.
- Knowledge and application of contemporary techniques for constructing practical distributed and parallel systems using both declarative and imperative languages.
- Parallel performance tuning using appropriate tools and methodologies.
- Understand the role of control and data abstraction in software design and implementation.
- Appreciation of relationship between imperative and declarative models of parallelism.

### Learning Outcomes – Personal Abilities
- Critically analyse parallel and distributed problems.
- Generate, interpret and evaluate parallel performance graphs.
- Develop original and creative parallel problem solutions.
- Showing initiative, creativity and team working skills in shared distributed and parallel application development.
- Demonstrate critical reflection, e.g. understanding of applicability of, and limitations to, parallel and distributed systems.

### Syllabus
Foundations of sequential and parallel programming; the role of sequential host languages in the context of distributed and parallel technologies. Distributed Technologies: Distribution concepts; low-level, mid-level and high-level distributed technologies; emerging distribution and coordination technologies. Parallel Technologies: Design of parallel systems, parallel performance analysis; programming heterogeneous systems; practical imperative parallel programming; practical declarative parallel programming.
F21DP Distributed & Parallel Technologies

Reassessment for Postgraduates only

Prerequisites: Academic knowledge of fundamentals of operating systems, computer networks and software engineering equivalent to an ordinary degree in Computer Science, basic knowledge of programming in C

COURSE RELATIONSHIPS
N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>60</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>40</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>