F21BC Biologically Inspired Computation

COURSE DETAILS

Course Code: F21BC
Full Course Title: Biologically Inspired Computation
SCQF Level: 11
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>Yes</th>
<th>Postgraduate Taught:</th>
<th>Yes</th>
<th>Postgraduate Research:</th>
<th>Yes</th>
</tr>
</thead>
</table>

Additional Information:

COURSE AIMS

Traditional computation finds it either difficult or impossible to perform a certain key range of tasks associated with pattern recognition, problem solving and autonomous intelligence. Great progress towards designing software for such tasks has emerged by taking inspiration from a range of natural, mainly biological, systems.

The aims of this course are to:

- introduce an appreciation of the former
- introduce the main biologically-inspired algorithms and techniques which are now commonly researched and applied
- establish a practical understanding of the real-world problems to which these techniques may be fruitfully be applied.

LEARNING OUTCOMES – SUBJECT MASTERY

- Understanding of limitations of traditional computation.
- A critical understanding of a range of biologically inspired computation methods, their limitations and areas of applicability.
- Ability to apply one or more biologically inspired techniques in solving a practical problem.

LEARNING OUTCOMES – PERSONAL ABILITIES

- Identify and define approaches that can be used to apply bio-inspired methods to existing problems in optimisation and machine learning.
- Exercise substantial autonomy and initiative (courseworks) (PDP)
- Demonstrate critical reflection (courseworks) (PDP).

SYLLABUS

- classical vs. biologically-inspired computation,
- evolutionary algorithms (basic EA design, and how they are applied to a wide range of problems)
- swarm intelligence (ant colony methods, particle swarm optimisation)
F21BC Biologically Inspired Computation

- neural computation (perceptrons, multilayer perceptrons, associative networks)
- cellular automata

Reassessment for Postgraduate students only

<table>
<thead>
<tr>
<th>COURSE RELATIONSHIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>F29AI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION AND ASSESSMENT METHODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edi</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>