COURSE DETAILS

Course Code: F20DL
Full Course Title: Data Mining and Machine Learning
SCQF Level: 10
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

Undergraduate: Yes Postgraduate Taught: No Postgraduate Research: No

Additional Information:

COURSE AIMS

In this course, students will develop:

• An understanding of the fundamental concepts and techniques used in data mining and machine learning.
• An understanding of the mathematics underpinning data mining and machine learning.
• A critical awareness of the appropriateness of different data mining and machine learning techniques and the relationships between them.
• Familiarity with common applications of data mining and machine learning techniques.

LEARNING OUTCOMES – SUBJECT MASTERY

• Extensive understanding of the data mining process and machine learning algorithms.
• Detailed understanding of the mathematics underpinning the data mining and machine learning methodologies.
• Awareness of the appropriateness and performance of the different techniques, as well as the relationships between them.
• Awareness of data quality and the appropriate use of data mining and machine learning for decision making.
• Ability to apply this knowledge for practical data mining and machine learning purposes

LEARNING OUTCOMES – PERSONAL ABILITIES

The students will be expected to:

• Demonstrate the ability to learn independently.
• Show capacity for rational problem identification and definition.
• Show capacity for critical analysis and solution selection.
• Manage time, work to deadlines, and prioritise workloads.
• Use appropriate computer software to process data.
• Present results in a way that demonstrates a good understanding of the technical and broader issues of data mining and machine learning.

SYLLABUS
Basic Concepts
Datasets, dealing with missing data, classification, supervised vs unsupervised learning.

Generative Models
Naïve Bayes, probabilistic graphical models, cluster analysis (such as k-means clustering, EM algorithm).

Discriminative Learning
Linear regression, decision tree learning, perceptron, advanced models such as multi-layer perceptron and deep learning architectures.

Course Relationships
N/A

Location and Assessment Methods

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>50</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>50</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>