COURSE DETAILS

Course Code: F20DL
Full Course Title: Data Mining and Machine Learning
SCQF Level: 10
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>Yes</th>
<th>Postgraduate Taught:</th>
<th>No</th>
<th>Postgraduate Research:</th>
<th>No</th>
</tr>
</thead>
</table>

Additional Information:

COURSE AIMS

In this course, students will develop:

- An understanding of the fundamental concepts and techniques used in data mining and machine learning.
- An understanding of the mathematics underpinning data mining and machine learning.
- A critical awareness of the appropriateness of different data mining and machine learning techniques and the relationships between them.
- Familiarity with common applications of data mining and machine learning techniques.

LEARNING OUTCOMES – SUBJECT MASTERY

- Extensive understanding of the data mining process and machine learning algorithms.
- Detailed understanding of the mathematics underpinning the data mining and machine learning methodologies.
- Awareness of the appropriateness and performance of the different techniques, as well as the relationships between them.
- Awareness of data quality and the appropriate use of data mining and machine learning for decision making.
- Ability to apply this knowledge for practical data mining and machine learning purposes.

LEARNING OUTCOMES – PERSONAL ABILITIES

The students will be expected to:

- Demonstrate the ability to learn independently.
- Show capacity for rational problem identification and definition.
- Show capacity for critical analysis and solution selection.
- Manage time, work to deadlines, and prioritise workloads.
- Use appropriate computer software to process data.
- Present results in a way that demonstrates a good understanding of the technical and broader issues of data mining and machine learning.

SYLLABUS
F20DL Data Mining and Machine Learning

Basic Concepts: datasets, dealing with missing data, classification, supervised vs unsupervised learning.

Generative Models: naïve Bayes, probabilistic graphical models, cluster analysis (such as k-means clustering, EM algorithm).

Discriminative Learning: linear regression, decision tree learning, perceptron, advanced models such as multi-layer perceptron and deep learning architectures.

<table>
<thead>
<tr>
<th>COURSE RELATIONSHIPS</th>
<th>N/A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LOCATION AND ASSESSMENT METHODS</th>
<th></th>
<th></th>
<th></th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edi</td>
<td>SBC</td>
<td>Ork</td>
<td>Dub</td>
<td>Malay</td>
<td>IDL</td>
<td>COLL</td>
<td>ALP</td>
<td>OTH</td>
<td>Coursework</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assessment</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
</tr>
</tbody>
</table>