COURSE DETAILS

Course Code: B31XN
Full Course Title: Scalable Inference and Deep Learning
SCQF Level: 11
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

<table>
<thead>
<tr>
<th>Undergraduate:</th>
<th>No</th>
<th>Postgraduate Taught:</th>
<th>Yes</th>
<th>Postgraduate Research:</th>
<th>Yes</th>
</tr>
</thead>
</table>

Additional Information:

COURSE AIMS

- Introduce state-of-the-art computational methods for performing inference from high dimensional data (Scalable optimisation, Deep Learning and Scalable Bayesian inference)
- Investigate applications for imaging, computer vision, machine learning, etc.

LEARNING OUTCOMES – SUBJECT MASTERY

Critical understanding of the mathematical background for scalable inference algorithms from high dimensional data. Mastery of

- Scalable Optimization and applications to imaging, machine learning, control, etc.

- Deep learning and applications to imaging, computer vision, etc.

- Scalable Bayesian inference and applications to imaging, uncertainty quantification, etc.

LEARNING OUTCOMES – PERSONAL ABILITIES

Understanding and practical knowledge of mathematical tools to solve high dimensional problems (i.e. involving large data sets)

SYLLABUS

Scalable Optimization

- Parallel and distributed algorithms

- Stochastic/randomized algorithms
• Applications to high-dimensional problems (e.g. imaging, computer vision, machine learning, graph signal processing, control, etc.)

Deep learning

• Deep feed-forward networks and regularization

• Optimization algorithms for training

• State-of-the-art neural networks (e.g., convolutional and recurrent neural networks, autoencoders)

• Applications to high-dimensional problems (e.g. imaging, computer vision, pattern recognition, etc.)

Scalable Bayesian inference

• High Dimensional MCMC

• Variational Bayes

• Bayesian deep learning and generative models

• Applications (e.g. imaging, uncertainty quantification, etc.)

COURSE RELATIONSHIPS

N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>100</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>100</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>