COURSE DETAILS
Course Code: B31SE
Full Course Title: Image Processing
SCQF Level: 11
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes | Postgraduate Taught: Yes | Postgraduate Research: Yes

Additional Information:

COURSE AIMS
- To provide a critical understanding of the principal theories and concepts of image analysis, modelling, enhancement and coding.
- To apply these theories and concepts to a range of digital images and video sequence
- To provide a critical awareness of current issues in image processing.
- To provide the ability to analyse problems and develop applications in image processing.

LEARNING OUTCOMES – SUBJECT MASTERY
- Critical understanding of an extensive range of image processing problems & potential solutions.
- Practical knowledge of limitations of techniques to accompany detailed theoretical knowledge.
- Skill in the use of specialist image processing tools in the implementation of techniques.
- Knowledge of current research in imaging and image processing.

LEARNING OUTCOMES – PERSONAL ABILITIES
- Ability to analyse and develop mathematical descriptions of image transformations
- Ability to critically review, evaluate and implement a range of techniques in image processing.

SYLLABUS
Core topics
B31SE Image Processing

• An introduction to Image Processing: Image representation, continuous and discrete, light and colour
• Single Pixel Processing in the Spatial Domain: gray level transformations, histogram processing: equalisation, modification and matching
• Image Transformations and the Frequency Domain: 2D analogue and digital Fourier transforms, convolution and correlation
• Image Filtering: smoothing and enhancement, simple linear filtering in the frequency domain, gradient/edge and corner detection, image restoration and Wiener filtering
• Image Formats and Compression: transmission and storage of images, image and video compression

Advanced topics: two selected from

• Texture analysis (statistical, fractals, Markov random fields and co-occurrence matrices)
• Segmentation: Nearest-neighbour segmentation and grouping; global thresholding and Hough transformation, clustering techniques
• Image classification: Supervised and unsupervised, naive classifiers (e.g., boxcar), minimum distance means, maximum likelihood
• Bayesian decision theory, k-means clustering
• The Haar transform, wavelet transforms in one and two dimensions, face detection using Haar wavelets
• Motion and video: the aperture and correspondence problems, frame differencing and motion detection, affine motion (Lukas-Kanade algorithm) and optical flow
• Geometric and wave theories of image formation, fundamental optical instruments (camera, microscope, telescope), polarisation imaging.

COURSE RELATIONSHIPS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Level</th>
<th>Title</th>
<th>School</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>B39SB</td>
<td>9</td>
<td>Time Frequency and Signal Analysis</td>
<td>School of Eng & Physical Sci</td>
<td>Pre-Requisite</td>
</tr>
</tbody>
</table>

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>80</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>20</td>
<td></td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>