COURSE DETAILS
Course Code: B27MW
Full Course Title: Mechanics, Fields and Forces
SCQF Level: 7
SCAF Credits: 15
Available as Elective: Yes

DELIVERY LEVEL
Undergraduate: Yes
Postgraduate Taught: No
Postgraduate Research: No

Additional Information:

COURSE AIMS
To provide a basic understanding of the fundamentals of mechanics, dynamics, electrical and gravitational fields. The course aims are:

- To provide an understanding of the fundamentals of linear and rotational dynamics, including an introduction to special relativity.
- To develop the principles of dynamics by showing a wide range of applications in engineering and science.
- To assist students towards an understanding of the use of mathematical models and techniques used for describing kinematics and mechanics.
- To provide and understanding of the linkage between fields, potentials and forces.
- To assist students towards an understanding of the use of mathematical models and techniques used for describing gravitational and electric fields.
- To provide an understanding of satellite and planetary motion and in the use of mathematical models to explain that motion.
- To provide a basic understanding of the principles of inductors and their application.

LEARNING OUTCOMES – SUBJECT MASTERY

- Students should be able to apply basic calculus to derive equations of motion describing linear kinematics and rotational kinematics.
- Students should have an awareness of special relativity and the effects on the mass and energy of a moving object.
- Students should be able to understand and apply mathematical descriptions of physical processes and relationships relating to:
 - Linear dynamics, relativistic dynamics, rotational dynamics, gravitational fields and forces, electrical fields and forces, magnetic fields and forces.
- Students should be able to interpret a physical problem in mechanics, fields and forces and formulate a solution to this problem using mathematical models where necessary.

LEARNING OUTCOMES – PERSONAL ABILITIES

Students should develop abilities to:

- Critically evaluate a problem, sketch a problem out, plan and organise their work, review and evaluate
academic material, express and interpret physical models mathematically, and solve problems mathematically.

- Take an interest in current developments and applications for the content material, make critical and evaluative comments, think independently about the subject, appreciate the historical background of the subject.
- Make effective use of online learning support materials, make use of tutorial support, organise study time in a way that allows them to meet coursework submission deadlines and prepare effectively for assessment.

SYLLABUS

- Kinematics
- Dynamics
- Rotation of Rigid Bodies
- Dynamics of Rotational Motion And Equilibrium
- Special Relativity
- Gravitational Forces And Fields
- Kepler’s Laws And Black Holes
- Electric Forces, Fields and Potential
- Application Of Electric and Magnetic Fields
- Faraday’s Law and Induction

Pre-requisite: Pass in Higher Physics (SCQF level 6) at grade B or better, or equivalent.

COURSE RELATIONSHIPS

N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>180</td>
<td>Assessment</td>
<td>Semester 2</td>
<td>B27FF</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td></td>
<td>Assessment</td>
<td>All Year</td>
<td>B27FF</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>180</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td>B27FF</td>
</tr>
</tbody>
</table>