F1C7-CCM Master of Science in Applied Mathematical Sciences with Climate Change Modelling

PROGRAMME DETAILS
Programme Code: F1C7-CCM
Department: Mathematics
Main Award: MSC - Master of Science
Full Award Title: Master of Science in Applied Mathematical Sciences with Climate Change Modelling
Level: Postgraduate Taught

LOCATION OF STUDY
Edinburgh Y Scottish Borders N Orkney N
Dubai N Malaysia N Approved Learning Partner N
Independent Distance Learners N Collaborative Learning Partner N Other N

ASSOCIATED AWARDS
Programme Code Award Title
F1C0-ZZZ PGCERT Postgraduate Certificate in Applied Mathematical Sciences with Climate Change Modelling
F1C5-CCM PGDIP Postgraduate Diploma in Applied Mathematical Sciences with Climate Change Modelling
F1C7-CCM MSC App Math Sci with CCM

ACCREDITATION
N/A

LEARNING OUTCOMES – SUBJECT MASTERY
Understanding, Knowledge and Cognitive Skills

- Extensive detail and critical understanding of the core areas and issues in mathematical sciences, mathematical biosciences and impact of climate change.
- Crucial comprehension of central topics in computational mathematics, statistics and areas of mathematics of the impact of climate change

Scholarship, Enquiry and Research (Research Informed Learning)

- Expertise in range of techniques in applied and computational mathematics and statistics with applications in the biosciences
- Extensive skills in use of computers to solve problems in mathematics and statistics with application to the biosciences and modelling the impact of climate change

LEARNING OUTCOMES – PERSONAL ABILITIES
Industrial, Commercial and Professional Practice

- Develop critical awareness of current practices within the applied mathematical sciences, its applications in biology and ecology and the context of climate change.
- Develop a capability for critically reflecting on roles and responsibilities.

Autonomy, Accountability and Working With Others
• Communicate effectively at all levels using a range of media.
• Plan and organise through self management and time management, assess issues associated with working as part of a team.
• Proficient skills in computer environments to present and communicate and problem solve

Communication, Numeracy & Information and Communications Technology

• Develop and demonstrate skills in writing and giving presentations
• Develop and demonstrate skills in computer environments to present and communicate and problem solve

APPROACHES TO TEACHING AND LEARNING

The approach in the programme is student focussed and is designed to encourage students to take responsibility for their own development and learning. Students interaction with the material is through a number of different methods. Within the timetable modules offer traditional lecture based material and a variety of laboratory based practicals. All the modules have a measure of coursework ranging from traditional solution to mathematics problems, use of specialized software, to discursive type assignments and interpretation of mathematical results to real-life problems.

Approaches to teaching and learning are continuously reviewed with regard to the students and the subject area. Specific details are provided in the appropriate module descriptors.

EDUCATIONAL AIMS OF THE PROGRAMME

The aims of the programme are to enable students to:

• Develop detailed knowledge and understanding into the central areas of mathematical modelling and the impacts of climate change
• Cultivate skills in key areas of computational, applied mathematics and statistics
• Develop original and creative solutions to problems in the applied mathematical sciences
• Communicate and work effectively with peers and academic staff demonstrating appropriate levels of autonomy and responsibility
• Plan and execute a significant research project or investigation in mathematical sciences demonstrating extensive details and critical understanding of the area and context of mathematical modelling of the impact of climate change.

ASSESSMENT POLICIES

Student performance is determined by separate elements of assessment within the programme.
Coursework assessment takes place throughout the taught component.

Assessment contains summative and formative components which enable students to achieve learning outcomes which cannot be appropriately tested in traditional examinations.

Each course will have an examination (normally two hours) and the examination mark will be combined with the coursework mark to produce a single mark for the course.

Dissertations marks will be agreed with the internal readers, external examiner and the Board of Studies.

Approaches to assessment are continually reviewed.

PROGRAMME STRUCTURE

Mandatory Courses

<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>SBC</th>
<th>Orkney</th>
<th>Dubai</th>
<th>HWUM</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>ALP</th>
<th>Other</th>
<th>Stage</th>
<th>Semester</th>
<th>Phase</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>D11CA</td>
<td>Climate Change, Sustainability and Adaptation</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>F11AM</td>
<td>Mathematical Ecology</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>F11MT</td>
<td>Modelling and Tools</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>F11DA</td>
<td>Data Assimilation with Applications to Climate Change</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>F11GM</td>
<td>Masters Project and Dissertation</td>
<td>60</td>
<td>11</td>
</tr>
</tbody>
</table>

Optional Courses

<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>SBC</th>
<th>Orkney</th>
<th>Dubai</th>
<th>HWUM</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>ALP</th>
<th>Other</th>
<th>Stage</th>
<th>Semester</th>
<th>Phase</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>F11MM</td>
<td>Optimisation</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>F11MS</td>
<td>Modelling and Simulation in the Life Sciences</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>F71SM</td>
<td>Statistical Methods</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>
F1C7-CCM Master of Science in Applied Mathematical Sciences with Climate Change Modelling

X 1 2 F11AL Applied Linear Algebra 15 11
X 1 2 F11AN Mathematical Biology and Medicine 15 11
X 1 2 F11AS Dynamical Systems 15 11
X 1 2 F11MP Partial Differential Equations 15 11
X 1 2 F11ND Numerical Analysis (PDEs) 15 11
X 1 2 F11SS Stochastic Simulation 15 11
X 1 2 F79BI Bayesian Inference & Computational Methods 15 9

COMPOSITION NOTES (PG)

8 courses (4 mandatory & 4 optional) plus project/dissertation for MSc.
8 taught courses (4 mandatory & 4 optional) for PGDip

Mandatory Credits 60
Optional Credits 60
Elective Credits 0
Dissertation Credits 60
Total 180

AWARDS, CREDITS AND CRITERIA (PG)

Awards, Credits and Levels

<table>
<thead>
<tr>
<th>Award Requirements</th>
<th>Overall Credits</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masters Degree</td>
<td>180</td>
<td>180 SCQF credits including a minimum of 150 credit at Level 11</td>
</tr>
<tr>
<td>Postgraduate Diploma</td>
<td>120</td>
<td>120 SCQF credits including a minimum of 90 credit at Level 11</td>
</tr>
<tr>
<td>Postgraduate Certificate</td>
<td>60</td>
<td>60 SCQF credits including a minimum of 40 credit at Level 11</td>
</tr>
</tbody>
</table>

Award Requirements

<table>
<thead>
<tr>
<th>Award Requirements</th>
<th>Total Course</th>
<th>Overall Mark</th>
<th>Overall Grade</th>
<th>Basis of Overall Mark/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master (Distinction)</td>
<td>8+Dissertation</td>
<td>70</td>
<td>A</td>
<td>Credit Weighted Average greater than or equal 70% over 8 courses at grades A-C plus a Dissertation at grade A.</td>
</tr>
<tr>
<td>Master</td>
<td>8+Dissertation</td>
<td>50</td>
<td>C</td>
<td>Credit Weighted Average greater than or equal 50% over 8 courses at grades A-D plus a Dissertation at minimum grade C.</td>
</tr>
<tr>
<td>Diploma (Distinction)</td>
<td>8</td>
<td>70</td>
<td>A</td>
<td>Credit Weighted Average greater than or equal 70% over 8 courses at grades A-C</td>
</tr>
<tr>
<td>Diploma</td>
<td>8</td>
<td>40</td>
<td>D</td>
<td>Credit Weighted Average greater than or equal 40% over 8 courses at grades A-E</td>
</tr>
<tr>
<td>Certificate</td>
<td>4</td>
<td>40</td>
<td>D</td>
<td>Credit Weighted Average greater than or equal 40% over 4 courses at grades A-E</td>
</tr>
</tbody>
</table>

DURATION OF STUDY

<table>
<thead>
<tr>
<th>IN MONTHS</th>
<th>Full-time</th>
<th>Part-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masters</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Diploma</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Certificate</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

RE-ASSESSMENT (PG)
1. A student who has been awarded a Grade E or F in a course may be re-assessed in that course. A student who has been awarded a Grade D in a course may be re-assessed in that course in order to proceed to or be eligible to receive the award of Masters.
2. A student shall be permitted only one re-assessment opportunity in a maximum of three taught courses. The opportunity for re-assessment in four or more taught courses shall be at the discretion of the Progression Board.
3. Any further re-assessment opportunities in a course will require the approval of the Postgraduate Studies Committee.
4. A student may be permitted, at the discretion of the Progression Board, to be re-assessed in the dissertation, project or other supervised research component of the course of study.

PROGRESSION TO DISSERTATION/PROJECT
In accordance with University Regulations, to progress to Masters level a minimum of Grade C is required