F147-APM Master of Science in Applied Mathematical Sciences

PROGRAMME DETAILS
Programme Code: F147-APM
Department: Mathematics
Main Award: MSC - Master of Science
Full Award Title: Master of Science in Applied Mathematical Sciences
Level: Postgraduate Taught

LOCATION OF STUDY
| Location | Edinburgh | Y | Scottish Borders | N | Orkney | N | Dubai | N | Malaysia | N | Approved Learning Partner | N | Independent Distance Learners | N | Collaborative Learning Partner | N | Other | N |

ASSOCIATED AWARDS
<table>
<thead>
<tr>
<th>Programme Code</th>
<th>Award</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>F140-ZZZ</td>
<td>PGCERT</td>
<td>Postgraduate Certificate in Applied Mathematical Sciences</td>
</tr>
<tr>
<td>F145-APM</td>
<td>PGDIP</td>
<td>Postgraduate Diploma in Applied Mathematical Sciences</td>
</tr>
<tr>
<td>F147-APM</td>
<td>MSC</td>
<td>Master of Science in Applied Mathematical Sciences</td>
</tr>
</tbody>
</table>

ACCREDITATION
N/A

LEARNING OUTCOMES – SUBJECT MASTERY
Understanding, Knowledge and Cognitive Skills

- Extensive detail and critical understanding of the core areas and issues in mathematical sciences
- Crucial comprehension of central topics in computational mathematics, statistics and areas of applied mathematics

Scholarship, Enquiry and Research (Research Informed Learning)

- Expertise in range of techniques in applied and computational mathematics and statistics
- Extensive skills in use of computers to solve problems in mathematics and statistics

LEARNING OUTCOMES – PERSONAL ABILITIES
Industrial, Commercial and Professional Practice

- Develop critical awareness of current practices within the applied mathematical sciences
- Develop a capability for critically reflecting on roles and responsibilities.

Autonomy, Accountability and Working With Others

- Communicate effectively at all levels using a range of media.
- Plan and organise through self management and time management, assess issues associated with working as part of a team.
- Proficient skills in computer environments to present and communicate and problem solve

Communication, Numeracy & Information and Communications Technology
F147-APM Master of Science in Applied Mathematical Sciences

- Develop and demonstrate skills in writing and giving presentations
- Develop and demonstrate skills in computer environments to present and communicate and problem solve

APPROACHES TO TEACHING AND LEARNING

The approach in the course is student focussed and is designed to encourage students to take responsibility for their own development and learning.

Students interaction with the material is through a number of different methods. Within the timetable modules offer traditional lecture based material and a variety of laboratory based practicals. All the modules have a measure of coursework ranging from traditional solution to mathematics problems, use of specialized software, to discursive type assignments and interpretation of mathematical results to real-life problems.

Approaches to teaching and learning are continuously reviewed with regard to the students and the subject area. Specific details are provided in the appropriate module descriptors.

EDUCATIONAL AIMS OF THE PROGRAMME

The aims of the course are to enable students to

- Develop detailed knowledge and understanding into the central areas of mathematical sciences
- Cultivate skills in key areas of computational, applied mathematics and statistics
- Develop original and creative solutions to problems in the applied mathematical sciences
- Communicate and work effectively with peers and academic staff demonstrating appropriate levels of autonomy and responsibility
- Plan and execute a significant research project or investigation in mathematical sciences demonstrating extensive details and critical understanding of the area.

ASSESSMENT POLICIES

Student performance is determined by separate elements of assessment within the course.

Coursework assessment takes place throughout the taught component.
Assessment contains summative and formative components to enable students to achieve learning outcomes which cannot be appropriately tested in traditional examinations.

Each course will have an examination (normally two hours) and the examination mark will be combined with the coursework mark to produce a single mark for the course.

Dissertations marks will be agreed with the internal readers, external examiner and the Board of Studies.

Approaches to assessment are continually reviewed.

PROGRAMME STRUCTURE

Mandatory Courses

<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>SBC</th>
<th>Orkney</th>
<th>Dubai</th>
<th>HWUM</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>ALP</th>
<th>Other</th>
<th>Stage</th>
<th>Semester</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11MM</td>
</tr>
<tr>
<td></td>
<td>Optimisation</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11MT</td>
</tr>
<tr>
<td></td>
<td>Modelling and Tools</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>F11AS</td>
</tr>
<tr>
<td></td>
<td>Dynamical Systems</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>F11GM</td>
</tr>
<tr>
<td></td>
<td>Masters Project and Dissertation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>SBC</th>
<th>Orkney</th>
<th>Dubai</th>
<th>HWUM</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>ALP</th>
<th>Other</th>
<th>Stage</th>
<th>Semester</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11AE</td>
</tr>
<tr>
<td></td>
<td>Applied Mathematics E</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11AM</td>
</tr>
<tr>
<td></td>
<td>Mathematical Ecology</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11FM</td>
</tr>
<tr>
<td></td>
<td>Functional Analysis</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11MS</td>
</tr>
<tr>
<td></td>
<td>Modelling and Simulation in the Life Sciences</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F11NC</td>
</tr>
<tr>
<td></td>
<td>Numerical ODEs</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>F71SM</td>
</tr>
<tr>
<td></td>
<td>Statistical Methods</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>F11AL</td>
</tr>
<tr>
<td></td>
<td>Applied Linear Algebra</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>F11AN</td>
</tr>
<tr>
<td></td>
<td>Mathematical Biology and Medicine</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>F11DA</td>
</tr>
<tr>
<td></td>
<td>Data Assimilation with Applications to Climate Change</td>
</tr>
</tbody>
</table>
F147-APM Master of Science in Applied Mathematical Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>F11MP</td>
<td>Partial Differential Equations</td>
<td>15</td>
</tr>
<tr>
<td>F11ND</td>
<td>Numerical Analysis (PDEs)</td>
<td>15</td>
</tr>
<tr>
<td>F11SS</td>
<td>Stochastic Simulation</td>
<td>15</td>
</tr>
<tr>
<td>F79BI</td>
<td>Bayesian Inference & Computational Methods</td>
<td>15</td>
</tr>
</tbody>
</table>

COMPOSITION NOTES(PG)

8 courses (3 mandatory & 5 optional) plus project/dissertation for MSc
8 taught courses (3 mandatory & 5 optional) for PGDip

<table>
<thead>
<tr>
<th>Mandatory Credits</th>
<th>Optional Credits</th>
<th>Elective Credits</th>
<th>Dissertation Credits</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>75</td>
<td>0</td>
<td>60</td>
<td>180</td>
</tr>
</tbody>
</table>

AWARDS, CREDITS AND CRITERIA(PG)

Awards, Credits and Levels

<table>
<thead>
<tr>
<th>Overall Credits</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masters Degree</td>
<td>180 SCQF credits including a minimum of 150 credit at Level 11</td>
</tr>
<tr>
<td>Postgraduate Diploma</td>
<td>120 SCQF credits including a minimum of 90 credit at Level 11</td>
</tr>
<tr>
<td>Postgraduate Certificate</td>
<td>60 SCQF credits including a minimum of 40 credit at Level 11</td>
</tr>
</tbody>
</table>

Award Requirements

<table>
<thead>
<tr>
<th>Award Requirement</th>
<th>Total Course Passes</th>
<th>Overall Mark</th>
<th>Overall Grade</th>
<th>Basis of Overall Mark/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master (Distinction)</td>
<td>8+Dissertation</td>
<td>70</td>
<td>A</td>
<td>Credit Weighted Average greater than or equal 70% over 8 courses at grades A-C plus a Dissertation at grade A.</td>
</tr>
<tr>
<td>Master</td>
<td>8+Dissertation</td>
<td>50</td>
<td>C</td>
<td>Credit Weighted Average greater than or equal 50% over 8 courses at grades A-D plus a Dissertation at minimum grade C.</td>
</tr>
<tr>
<td>Diploma (Distinction)</td>
<td>8</td>
<td>70</td>
<td>A</td>
<td>Credit Weighted Average greater than or equal 70% over 8 courses at grades A-C</td>
</tr>
<tr>
<td>Diploma</td>
<td>8</td>
<td>40</td>
<td>D</td>
<td>Credit Weighted Average greater than or equal 40% over 8 courses at grades A-E</td>
</tr>
<tr>
<td>Certificate</td>
<td>4</td>
<td>40</td>
<td>D</td>
<td>Credit Weighted Average greater than or equal 40% over 4 courses at grades A-E</td>
</tr>
</tbody>
</table>

DURATION OF STUDY

<table>
<thead>
<tr>
<th>IN MONTHS</th>
<th>Full-time</th>
<th>Part-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masters</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Diploma</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Certificate</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

RE-ASSESSMENT (PG)

1. A student who has been awarded a Grade E or F in a course may be re-assessed in that course. A student who has been awarded a Grade D in a course may be re-assessed in that course in order to proceed to or be eligible to receive the award of Masters.
2. A student shall be permitted only one re-assessment opportunity in a maximum of three taught courses. The opportunity for re-assessment in four or more taught courses shall be at the discretion of the Progression Board.

3. Any further re-assessment opportunities in a course will require the approval of the Postgraduate Studies Committee.

4. A student may be permitted, at the discretion of the Progression Board, to be re-assessed in the dissertation, project or other supervised research component of the course of study.

PROGRESSION TO DISSERTATION/PROJECT

In accordance with University Regulations, to progress to Masters level a minimum of Grade C is required.