B29QS Quantum Theory and Spectroscopy

COURSE DETAILS

Course Code: B29QS
Full Course Title: Quantum Theory and Spectroscopy
SCQF Level: 9
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL

| Undergraduate: | Yes | Postgraduate Taught: | No | Postgraduate Research: | No |

COURSE AIMS

This module aims to provide a fundamental course in the basic physics, concepts and techniques of quantum mechanics and spectroscopy.

LEARNING OUTCOMES – SUBJECT MASTERY

- Appreciation of wave properties of particles and particle properties of waves.
- Application of the Schrödinger equation to free and confined particles
- Calculation of expectation values for observables
- Appreciation of the Double slit experiment and interpretation of quantum mechanics.
- Quantitative understanding of tunnelling and barrier penetration.
- Familiarity with the harmonic oscillator
- Basic knowledge of angular momentum in quantum mechanics.
- Ability to reproduce elementary treatment of the Hydrogen atom.
- To understand the concept of state vectors and to be able to relate this to qubits.
- Ability to extract structural information from atomic and molecular spectra
- Understanding why different types of spectra appear as they do
- Simple understanding of atomic bonding
- Appreciation of spectroscopy as a diagnostic tool
- Appreciation of the timescales of molecular motion
- Understanding of spectroscopic notation

LEARNING OUTCOMES – PERSONAL ABILITIES

Personal abilities are embedded in the module. The module provides the opportunity to:

- Apply the advanced core knowledge expected of a professional physicist to gain professional level insights,
- Communicate effectively with professional level colleagues
- Interpret, use and evaluate critically a wide range of data to solve problems of both a familiar and unfamiliar nature
• Manage time effectively, work to deadlines and prioritise workloads
• Use a range of ICT skills with on-line materials and web links to support the learning process
• Apply strategies for appropriate selection of relevant information from a wide source and large body of knowledge
• Exercise significant initiative and independence in carrying out learning activities and researching information

SYLLABUS

Introduction to Quantum Theory:

• Comparison of classical theory (Rayleigh Jeans) and quantum theory (Planck)
• Photoelectric effect
• Bohr theory of the atom
• De Broglie principle and wave-particle duality
• Production and properties of x-rays
• Line spectra of atoms
• Compton scattering
• Electron diffraction

Quantum Theory:

• Wave vs. particle properties
• Schrödinger equation
• Free and confined particles
• Expectation values and observables
• Double slit experiment and interpretation of quantum mechanics
• Tunnelling
• The harmonic oscillator
• The rigid rotor and angular momentum
• The hydrogen atom.
• Entanglement
• The formalism of quantum mechanics: state vectors, Hilbert space and the density matrix.
Quantum theory and spectroscopy:

- Quantum information processing: the two-level system and the qubit.

Spectroscopy:

- Common spectroscopic units of energy & notation
- Multi-electron atoms
- Angular momentum coupling
- Selection rules
- Atomic spectroscopy
- Timescales of atomic and molecular motion
- Rotational & vibrational spectroscopy of molecules
- Linear combinations of atomic orbitals & chemical bonding
- Introduction to molecular electronic spectroscopy
- Factors influencing spectral lines shapes & intensities

COURSE RELATIONSHIPS

N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>180</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td>180</td>
<td>Assessment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>180</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>