B29DR Dynamics and Relativity

COURSE DETAILS
Course Code: B29DR
Full Course Title: Dynamics and Relativity
SCQF Level: 9
SCAF Credits: 15
Available as Elective: No

DELIVERY LEVEL
Undergraduate: Yes
Postgraduate Taught: No
Postgraduate Research: No

Additional Information:

COURSE AIMS
To introduce the basic concepts of advanced classical mechanics.

To establish the transition from classical observables to operators in quantum mechanics.

To provide an understanding of optics and simple optical systems.

LEARNING OUTCOMES – SUBJECT MASTERY
Understanding classical dynamics and its application to a wide range of phenomena.

Achieve a critical knowledge and understanding of relativity

Apply the theory of the course topics to problems or situations not previously encountered

LEARNING OUTCOMES – PERSONAL ABILITIES
Personal abilities are embedded in the module. The module provides the opportunity to:

- Apply the advanced core knowledge expected of a professional physicist to gain professional level insights,
- Communicate effectively with professional level colleagues
- Interpret, use and evaluate critically a wide range of data to solve problems of both a familiar and unfamiliar nature
- Manage time effectively, work to deadlines and prioritise workloads
- Use a range of ICT skills with on-line materials and web links to support the learning process
- Apply strategies for appropriate selection of relevant information from a wide source and large body of knowledge
- Exercise significant initiative and independence in carrying out learning activities and researching information

SYLLABUS
Dynamics

Simple harmonic motion (revision).

Damped and forced harmonic oscillators.

Periodic motion under a central force.

Small oscillations and normal modes in molecules.

Rotational dynamics

Special relativity

The Michelson-Morley experiment

Concept of inertial reference frames; Galilean and relativistic transformations between frames

Time dilation; Length contraction;

Relativistic Doppler effect

Relativistic particle dynamics.

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Ed</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>180</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td>180</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>180</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>