F1H1-MAT Master of Mathematics

PROGRAMME DETAILS
Programme Code: F1H1-MAT
Department: Mathematics
Main Award: MMATH - Master of Mathematics
Full Award Title: Master of Mathematics
Level: Undergraduate

LOCATION OF STUDY
<table>
<thead>
<tr>
<th>Edinburgh</th>
<th>Y</th>
<th>Scottish Borders</th>
<th>N</th>
<th>Orkney</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubai</td>
<td>N</td>
<td>Malaysia</td>
<td>N</td>
<td>Approved Learning Partner</td>
<td>N</td>
</tr>
<tr>
<td>Independent Distance Learners</td>
<td>N</td>
<td>Collaborative Learning Partner</td>
<td>N</td>
<td>Other</td>
<td>N</td>
</tr>
</tbody>
</table>

ASSOCIATED AWARDS
<table>
<thead>
<tr>
<th>Programme Code</th>
<th>Award</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>F111-ZZZ</td>
<td>BSCO</td>
<td>Bachelor of Science in Mathematics</td>
</tr>
<tr>
<td>F1H1-MAT</td>
<td>MMATH</td>
<td>Master of Mathematics</td>
</tr>
</tbody>
</table>

ACCREDITATION
N/A

LEARNING OUTCOMES – SUBJECT MASTERY
Understanding, Knowledge and Cognitive Skills

On completion of the course students should be able to:

- demonstrate an understanding across a broad range of mathematics up to Masters level
- demonstrate a detailed knowledge and understanding in certain specific areas of mathematics
- demonstrate an understanding of the power of abstraction and of the notions of proof and logical reasoning
- demonstrate an appreciation of the usefulness of mathematics over a wide range of applications

Scholarship, Enquiry and Research (Research Informed Learning)

On completion of the course students should be able to:

- demonstrate a good level of skill in calculation and in mathematical manipulation
- demonstrate the ability to present rigorous arguments
- model real-life situations in mathematical terms and analyse the resulting models
- demonstrate computational skills involving the use of a range of software packages

LEARNING OUTCOMES – PERSONAL ABILITIES
Industrial, Commercial and Professional Practice
On completion of the course, students will have the knowledge and skills for the development, application and consequent analysis of mathematics and mathematical models as currently required in modern industrial sectors, including IT, finance, engineering, and general science and technology. They will be able to identify, analyse and solve problems, and discuss issues at a professional level; they will also be able to critically review existing practices and will be in a strong position to move on to a professional environment, with sound knowledge, confidence and awareness of the nature of that environment and the demands it will make.

Autonomy, Accountability and Working With Others

On completion of the course students will be able to:

- plan and organise their own learning through self management and time management
- demonstrate the ability to work with relatively little guidance or support, to undertake self-directed work and to meet deadlines
- communicate effectively at all levels and using a range of media
- interact effectively with professionals from a wide and diverse range of areas
- communicate and work effectively with peers and academic staff demonstrating appropriate levels of autonomy and responsibility

Communication, Numeracy & Information and Communications Technology

On completion of the course, students will be numerate, able to make presentations on specialised topics and able to communicate well with peers and other colleagues. They will have extensive IT knowledge and skills and will be able to use them confidently. They will also have the necessary background to enable them to be ready and able to communicate on technical and general matters with peers and senior colleagues.

APPROACHES TO TEACHING AND LEARNING

The following teaching methods are used: lectures, tutorials, computing laboratory work, coursework, projects. Teaching on the course is student-focussed, with students encouraged to take responsibility for their own learning and development. In addition, students learn through structured group work in problems solving, collaborative student presentations, and independent study and technical project work. Resource-based and problem-based teaching styles are used to facilitate the motivational and assimilative phases of the learning process. The level and type of support available via VISION will vary between the modules as is appropriate for the subject matter.

Approaches to learning and teaching are continually reviewed and developed with the aim of matching them to the abilities and experiences of the students.

EDUCATIONAL AIMS OF THE PROGRAMME
The principal aims of the course are to

- provide high-quality undergraduate education in a wide range of subjects in modern mathematics to Masters level
- enable students to develop detailed knowledge and critical understanding of both theoretical and applied elements of mathematics
- provide students with training and practical experience of modelling, analysing and interpreting mathematical and real-world problems
- enable students to communicate and work effectively with peers and academic staff, demonstrating appropriate levels of autonomy, initiative, and responsibility
- provide students at the undergraduate level with the opportunity to plan and write a dissertation requiring detailed and critical understanding in an area of mathematics
- equip students with the grounding in mathematics necessary to go onto to further study or straight into graduate jobs
- give a detailed knowledge and understanding at a more advanced level, and a critical awareness of current problems in some areas of mathematics

ASSESSMENT POLICIES

The assessment policy for the course incorporates a range of assessment types. Continuous assessment during some modules and summative assessment at the conclusion of modules both contribute to the overall assessment and are used to formally measure achievement in specified learning outcomes. Understanding, knowledge and subject-specific skills are assessed by coursework assignments and written examinations. Formative assessment is used to provide feedback and to inform student learning.

Approaches to assessment are continually reviewed. Specific details about methods of assessment are provided in the appropriate module descriptors.

PROGRAMME STRUCTURE

Mandatory Courses

<table>
<thead>
<tr>
<th>Edinburgh/ Orkney/SBC</th>
<th>Malaysia</th>
<th>Dubai</th>
<th>ALP</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>Stage</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1 1</td>
<td>F17CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Calculus A</td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>1 1</td>
<td>F17CC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Introduction to University Mathematics</td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>1 1</td>
<td>F77SA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Introduction to Statistical Science A</td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>1 2</td>
<td>F17CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Calculus B</td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>1 2</td>
<td>F17GA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Problem Solving</td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>1 2</td>
<td>F77SB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Introduction to Statistical Science B</td>
<td></td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>
Optional Courses

<table>
<thead>
<tr>
<th>Edinburgh/Orkney/SGC</th>
<th>Malaysia</th>
<th>ALP</th>
<th>IDL</th>
<th>Coll. Partner</th>
<th>Stage</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SCQF Cr</th>
<th>SCQF Lvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1 1</td>
<td>F17GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mathematics in Context</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>1 2</td>
<td>F17SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discrete Mathematics</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>B28PO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Photonics and Optics</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>C38FM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Financial Markets Theory</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>C38FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Financial Reporting</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>F17LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Logic and Proof</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>F18GD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mathematics for Direct Entrants</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>F27IS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interactive Systems</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 1</td>
<td>F78PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Probability and Statistics A</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>B28TP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thermal Physics and Properties of Matter</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>C28EP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contemporary Economic Policy and Institutions</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>C38FN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corporate Financial Theory</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>C38MO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Management Accounting in Organisations</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>C38SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Social and Environmental Accounting</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>F17SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discrete Mathematics</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>F18GW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mathematics Workshop</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>F27WD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Web Design and Databases</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>F78PB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Probability and Statistics B</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2 2</td>
<td>F78SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Statistics for Science</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3 1</td>
<td>F19MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vector Analysis</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3 1</td>
<td>F19PB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pure Mathematics B</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3 1</td>
<td>F79PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Statistics for Social Science</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3 2</td>
<td>F19AB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Applied Mathematics B</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>3 2</td>
<td>X</td>
<td>F19MC Complex Analysis</td>
<td>15 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 2</td>
<td>X</td>
<td>F19NB Numerical Analysis B</td>
<td>15 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>X</td>
<td>F10AC Applied Mathematics C</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>X</td>
<td>F10AM Mathematical Biology A</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>X</td>
<td>F10MF Functional Analysis</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>X</td>
<td>F10MM Optimisation</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>X</td>
<td>F10NC Numerical Analysis C</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>X</td>
<td>F10PC Pure Mathematics C</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 2</td>
<td>X</td>
<td>F10AN Mathematical Biology B</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 2</td>
<td>X</td>
<td>F10MP Partial Differential Equations</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 2</td>
<td>X</td>
<td>F10ND Numerical Analysis D</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 2</td>
<td>X</td>
<td>F10PD Pure Mathematics D</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 2</td>
<td>X</td>
<td>F10PG Geometry</td>
<td>15 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11AE Applied Mathematics E</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11AM Mathematical Ecology</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11FM Functional Analysis</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11MM Optimisation</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11MS Modelling and Simulation in the Life Sciences</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11MT Modelling and Tools</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11NC Numerical ODEs</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11PE Pure Mathematics E</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 1</td>
<td>X</td>
<td>F11ST Special Topics 1</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11AL Applied Linear Algebra</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11AN Mathematical Biology and Medicine</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11AS Dynamical Systems</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11DA Data Assimilation with Applications to Climate Change</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11MP Partial Differential Equations</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11ND Numerical Analysis (PDEs)</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11PF Pure Mathematics F</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11PG Geometry</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11SS Stochastic Simulation</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 2</td>
<td>X</td>
<td>F11SU Special Topics 2</td>
<td>15 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVES (UG)

Stage 1

Any SCQF Level 7 course from approved list

Stage 2

N/A

Stage 3

N/A

Stage 4

N/A

Stage 5

N/A
COMPOSITION AND STAGE NOTES (UG)

Stage 1
- Students must study 6 mandatory courses plus 2 optional or elective courses.

<table>
<thead>
<tr>
<th>Mandatory Credits 1</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits 1</td>
<td>30</td>
</tr>
<tr>
<td>Elective Credits 1</td>
<td></td>
</tr>
<tr>
<td>Total 1</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 2
- Students must study 6 mandatory courses, together with 2 optional courses.
- Students who wish to take C38FR, C38FM, C38MO, C38SE or C38FN must have grade D or above in C37FF.
- Students who wish to take B28PO or B28TP must have a grade D or above in B27MW and B27FF.

<table>
<thead>
<tr>
<th>Mandatory Credits 2</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits 2</td>
<td>30</td>
</tr>
<tr>
<td>Elective Credits 2</td>
<td></td>
</tr>
<tr>
<td>Total 2</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 3
- Students must study 8 mandatory courses.

<table>
<thead>
<tr>
<th>Mandatory Credits 3</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits 3</td>
<td>75</td>
</tr>
<tr>
<td>Elective Credits 3</td>
<td></td>
</tr>
<tr>
<td>Total 3</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 4
- Students must study 1 mandatory course plus 7 optional courses.

- An optional course may not run if there is insufficient demand for it; some choices of courses may not be available to students in some years because of timetabling constraints.

- Some course pairs may be excluded, and a list of any that are will be published in the student handbook. Students will only be able to choose at most one course from such a pair, even if they are at different SCQF levels and are taught in different stages.

<table>
<thead>
<tr>
<th>Mandatory Credits 4</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Credits 4</td>
<td>105</td>
</tr>
<tr>
<td>Elective Credits 4</td>
<td></td>
</tr>
<tr>
<td>Total 4</td>
<td>120</td>
</tr>
</tbody>
</table>

Stage 5
- Students must study 1 mandatory course plus 7 optional courses.

- An optional course may not run if there is insufficient demand for it; some choices of courses may not be available to students in some years because of timetabling constraints.
Some course pairs may be excluded, and a list of any that are will be published in the student handbook. Students will only be able to choose at most one course from such a pair, even if they are at different SCQF levels and are taught in different stages.

<table>
<thead>
<tr>
<th>Credits</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>15</td>
</tr>
<tr>
<td>Optional</td>
<td>105</td>
</tr>
<tr>
<td>Elective</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

ASSESSMENT AND PROGRESSION (UG)

Reassessment Opportunities

1. A student who has been awarded a Grade E or a Grade F in a course may be re-assessed in that course.
2. A student shall be permitted only one re-assessment opportunity to be taken at the Resit diet of examination following the first assessment of the course.
3. A student shall not be re-assessed in any qualifying course taken in the final stage of a course of study.
4. The Progression Board may permit a student to be re-assessed in any qualifying course not taken in the final stage in order to gain credits for the course, provided that the mark or grade obtained in the first assessment of any such course is used in determining the classification of the degree to be awarded.

Progression Requirements

Part A. The minimum number of credits required to progress through each stage are as follows

<table>
<thead>
<tr>
<th>Stage</th>
<th>Credits (Courses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 2</td>
<td>120 (8 courses)</td>
</tr>
<tr>
<td>2 to 3</td>
<td>240 (16 courses)</td>
</tr>
<tr>
<td>3 to 4</td>
<td>360 (24 courses)</td>
</tr>
<tr>
<td>4 to 5</td>
<td>480 (32 courses)</td>
</tr>
</tbody>
</table>

Part B. The minimum grade of D is required in the following courses

Stage 1

An average mark of at least 60% at the first attempt in the 6 mandatory courses and a minimum of grade D in the optional/elective courses.

Stage 2

An average mark of at least 60% at the first attempt in the 6 mandatory courses and a minimum of grade D in the optional courses.

Stage 3

An average mark of at least 60% at the first attempt. The Progression Board may permit a student to be re-assessed in any qualifying course taken in the third stage in order to gain credits for the course, provided that the mark or grade obtained in the first assessment of any such course is used in determining the classification of the degree to be awarded.
Stage 4

An average mark of at least 60% and a minimum of Grade E, at the first attempt in all courses.

AWARDS, CREDITS AND LEVEL (UG)

<table>
<thead>
<tr>
<th>Part A. Credit Requirements</th>
<th>Overall Credits</th>
<th>Specific Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Masters</td>
<td>600</td>
<td>600 SCQF credits including a minimum of 120 credit at Level 11</td>
</tr>
<tr>
<td>Honours Degree (inc.MA)</td>
<td>480</td>
<td>480 SCQF credits including a minimum of 180 credit at Level 9 and 10 of which at least 90 credits at Level 10</td>
</tr>
<tr>
<td>Ordinary or General Degree</td>
<td>360</td>
<td>360 SCQF credits including a minimum of 60 credit at Level 9</td>
</tr>
<tr>
<td>Diploma of Higher Education</td>
<td>240</td>
<td>240 SCQF credits including a minimum of 90 credit at Level 8</td>
</tr>
<tr>
<td>Certificate of Higher Education</td>
<td>120</td>
<td>120 SCQF credits including a minimum of 90 credit at Level 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B. Mark/Grade Requirements</th>
<th>Overall Mark</th>
<th>Overall Grade</th>
<th>Basis of Overall Mark/Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Masters</td>
<td>>=50%</td>
<td>C</td>
<td>Credit Weighted Average >=50% over all qualifying courses at Grades A-D</td>
</tr>
<tr>
<td>Honours Degree (inc.MA)</td>
<td>>=40%</td>
<td>D</td>
<td>1st: Credit Weighted Average >=70% Over all qualifying courses at grades A-D. 2.1: Credit Weighted Average >=60% Over all qualifying courses at grades A-D. 2.2: Credit Weighted Average >=50% Over all qualifying courses at grades A-D. 3rd: Credit Weighted Average >=40% Over all qualifying courses at grades A-D.</td>
</tr>
<tr>
<td>Ordinary or General Degree</td>
<td>>=40%</td>
<td>D</td>
<td>Minimum of grade D in all pre-requisite courses.</td>
</tr>
<tr>
<td>Diploma of Higher Education</td>
<td>>=40%</td>
<td>D</td>
<td>Minimum of grade D in all pre-requisite courses.</td>
</tr>
<tr>
<td>Certificate of Higher Education</td>
<td>>=40%</td>
<td>D</td>
<td>Minimum of grade D in all pre-requisite courses.</td>
</tr>
</tbody>
</table>

DURATION OF STUDY

<table>
<thead>
<tr>
<th>IN MONTHS</th>
<th>Full-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Masters</td>
<td>60</td>
</tr>
<tr>
<td>Honours Degree</td>
<td>48</td>
</tr>
<tr>
<td>Ordinary or General Degree</td>
<td>36</td>
</tr>
<tr>
<td>Diploma of Higher Education</td>
<td>24</td>
</tr>
<tr>
<td>Certificate of Higher Education</td>
<td>12</td>
</tr>
</tbody>
</table>