COURSE DETAILS

<table>
<thead>
<tr>
<th>Course Code: B28PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Course Title: Photonics and Optics</td>
</tr>
<tr>
<td>SCQF Level: 8</td>
</tr>
<tr>
<td>SCAF Credits: 15</td>
</tr>
<tr>
<td>Available as Elective: No</td>
</tr>
</tbody>
</table>

DELIVERY LEVEL

| **Undergraduate:** Yes | **Postgraduate Taught:** No | **Postgraduate Research:** No |

COURSE AIMS

- To give a grounding in the technology of photonics and its applications
- To provide an understanding of wave optics, including interference, coherence, diffraction
- To provide an understanding of the physics behind the major photonics elements including polarisation, birefringence, and optical fibres
- To provide an understanding of optics and simple optical systems.

LEARNING OUTCOMES – SUBJECT MASTERY

- Understanding of light as a wave and the relevance of this to optical effects such as interference and diffraction, and hence to lasers and optical fibres
- Students should be able to use mathematical methods to predict optical effects with e.g. light-matter interaction, interference, fibre optics, geometrical optics

LEARNING OUTCOMES – PERSONAL ABILITIES
• Students should develop abilities to:
 - critically evaluate a problem
 - plan and organise their work
 - review and evaluate academic materials
 - express and interpret physical data graphically
 - solve problems mathematically.

• Take an interest in current developments in, and applications of, physics; make critical and evaluative comment; understand that physics is a changing subject; think independently about the subject.

• Make effective use of online learning support materials; make effective use of the support of academic and tutorial support staff; organise their study time in a way that allows them to meet coursework submission deadlines and prepare effectively for assessments

SYLLABUS

Photonics

• Waves: wave equation; spherical, plane waves; superposition
• Interference: double & multiple beam interference; interferometers (Michelson, Mach-Zehnder, Fabry-Perot); coherence
• Diffraction: Fraunhofer diffraction; diffraction gratings and resolving power
• Lasers: principles of operation (stimulated emission, resonators, population inversion and how to achieve it); properties of laser light
• Fibre optics: principles of optical waveguides (including fibre optics)- total internal reflection, modes; applications of fibre optics
• Applications of photonics: a number of applications will be explored, such as: optical data storage; laser ranging; laser processing of materials (welding, drilling, cutting, etc; optical telecommunications.

Optics
B28PO Photonics and Optics

- Geometric optics:
 - Lenses and mirrors; thin lens equation; combinations of lenses; thick lenses and principal planes; aberrations.
 - Examples of imaging systems.

- Polarisation:
 - Polarisers, waveplates
 - Birefringence

COURSE RELATIONSHIPS
N/A

LOCATION AND ASSESSMENT METHODS

<table>
<thead>
<tr>
<th>Edi</th>
<th>SBC</th>
<th>Ork</th>
<th>Dub</th>
<th>Malay</th>
<th>IDL</th>
<th>COLL</th>
<th>ALP</th>
<th>OTH</th>
<th>Method</th>
<th>Weight</th>
<th>Exam Mins</th>
<th>Type</th>
<th>Diet</th>
<th>Synoptic Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>70</td>
<td>120</td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coursework</td>
<td>30</td>
<td></td>
<td>Assessment</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Examination</td>
<td>100</td>
<td>120</td>
<td>Reassessment</td>
<td>Semester 3</td>
<td></td>
</tr>
</tbody>
</table>